
Hammurabi Documentation
Release 0.5.0

Gábor Boros

Apr 02, 2020

CONTENTS

1 Hammurabi 1
1.1 Features . 1
1.2 Installation . 2
1.3 Configuration . 2
1.4 Command line options . 2
1.5 Usage examples . 2
1.6 Custom Rules . 5
1.7 Contributing . 5
1.8 Why Hammurabi? . 6

2 Installation 7
2.1 Stable release . 7
2.2 From sources . 7

3 Configuration 9
3.1 Overview . 9
3.2 Hammurabi configuration . 9
3.3 Pillar configuration . 10

4 Rules 11
4.1 Base rule . 11
4.2 Attributes . 12
4.3 Directories . 13
4.4 Files . 15
4.5 Ini files . 18
4.6 Operations . 21
4.7 Templates . 23
4.8 Text files . 24
4.9 YAML files . 26

5 Preconditions 31
5.1 Base precondition . 31

6 Reporters 33
6.1 Base reporter . 33
6.2 Formatted reporters . 33

7 hammurabi 35
7.1 hammurabi package . 35

8 Contributing 75

i

8.1 Types of Contributions . 75
8.2 Get Started! . 76
8.3 Pull Request Guidelines . 77
8.4 Releasing . 77

9 Vulnerabilities 79
9.1 Reporting vulnerabilities . 79

10 Credits 81
10.1 Development Lead . 81
10.2 Contributors . 81

11 CHANGELOG 83
11.1 Unreleased . 83
11.2 0.5.0 - 2020-03-31 . 83
11.3 0.4.0 - 2020-03-31 . 83
11.4 0.3.1 - 2020-03-26 . 84
11.5 0.3.0 - 2020-03-25 . 84
11.6 0.2.0 - 2020-03-23 . 85
11.7 0.1.2 - 2020-03-18 . 86
11.8 0.1.1 - 2020-03-17 . 86
11.9 0.1.0 - 2020-03-12 . 87

12 Indices and tables 89

Python Module Index 91

Index 93

ii

CHAPTER

ONE

HAMMURABI

Mass changes made easy.

Hammurabi is an extensible CLI tool responsible for enforcing user-defined rules on a git repository.

1.1 Features

Hammurabi integrates well with both git and Github to make sure that the execution happens on a separate branch and
the committed changes are pushed to the target repository. After pushing to the target repository, a pull request will be
opened.

Hammurabi supports several operations (Rules) by default. These Rules can do

• file and directory operations like copy, move, create or delete

• manipulation of attributes like ownership or access permissions change

• file and directory manipulations

• piped rule execution (output of a rule is the input of the next rule)

• children rule execution (output of a rule is the input of the upcoming rules)

• creating files from Jinja2 templates

Supported file formats:

• plain text

• ini

• yaml (basic, single document operations)

Upcoming file format support:

• toml

• json

1

https://pypi.python.org/pypi/hammurabi
https://travis-ci.org/gabor-boros/hammurabi
https://hammurabi.readthedocs.io/en/latest/?badge=latest
https://codeclimate.com/github/gabor-boros/hammurabi/maintainability
https://codeclimate.com/github/gabor-boros/hammurabi/test_coverage
https://bestpractices.coreinfrastructure.org/projects/3587

Hammurabi Documentation, Release 0.5.0

• hocon

1.2 Installation

Hammurabi can be installed by running pip install hammurabi and it requires Python 3.7.0+ to run. This is
the preferred method to install Hammurabi, as it will always install the most recent stable release. If you don’t have
pip installed, this Python installation guide can guide you through the process.

1.3 Configuration

For configuration instructions, please visit the documentation site.

1.4 Command line options

hammurabi [OPTIONS] COMMAND [ARGS]...

Hammurabi is an extensible CLI tool responsible for enforcing user-defined
rules on a git repository.

Find more information at: https://hammurabi.readthedocs.io/latest/

Options:
-c, --config PATH Set the configuration file. [default:

pyproject.toml]
--repository TEXT Set the remote repository. Required format:

owner/repository
--github-token TEXT Set github access token
--log-level [DEBUG|INFO|WARNING|ERROR]

Set logging level.
--help Show this message and exit.

Commands:
describe Show details of a specific resource or group of resources.
enforce Execute all registered Law.
get Show a specific resource or group of resources.
version Print Hammurabi version.

1.5 Usage examples

In every case, make sure that you clone the target repository prior using Hammurabi. After cloning the repository,
always set the current working directory to the target’s path. Hammurabi will not clone the target repository or change
its execution directory.

2 Chapter 1. Hammurabi

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://hammurabi.readthedocs.io/en/latest/config.html

Hammurabi Documentation, Release 0.5.0

1.5.1 Enforce registered laws

$ hammurabi enforce
[INFO] 2020-14-07 16:31 - Checkout branch "hammurabi"
[INFO] 2020-14-07 16:31 - Executing law "L001"
[INFO] 2020-14-07 16:31 - Running task for "configure file exists"
[INFO] 2020-14-07 16:31 - Rule "configure file exists" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Minimum clang version is set"
[INFO] 2020-14-07 16:31 - Rule "Minimum clang version is set" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Minimum icc version is set"
[INFO] 2020-14-07 16:31 - Rule "Minimum icc version is set" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Minimum lessc version is set"
[INFO] 2020-14-07 16:31 - Rule "Minimum lessc version is set" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Maximum lessc version is set"
[INFO] 2020-14-07 16:31 - Rule "Maximum lessc version is set" finished successfully
[INFO] 2020-14-07 16:31 - Pushing changes
[INFO] 2020-14-07 16:35 - Checking for opened pull request
[INFO] 2020-14-07 16:35 - Opening pull request

1.5.2 Listing available laws

$ hammurabi get laws
- Gunicorn config set up properly

1.5.3 Get info about a law by its name

$ hammurabi get law "Gunicorn config set up properly"
Gunicorn config set up properly

Change the gunicorn configuration based on our learnings
described at: https://google.com/?q=gunicorn.

If the gunicorn configuration does not exist, create a
new one configuration file.

1.5. Usage examples 3

Hammurabi Documentation, Release 0.5.0

1.5.4 Get all registered (root) rules

$ hammurabi get rules
- Rule 1
- Rule 5

1.5.5 Get a rule by its name

$ hammurabi get rule "Rule 1"
Rule 1

Ensure that a file exists. If the file does not exists,
this :class:`hammurabi.rules.base.Rule` will create it.

Due to the file is already created by :func:`pre_task_hook`
there is no need to do anything just return the input parameter.

1.5.6 Describe a law by its name

$ hammurabi describe law "Gunicorn config set up properly"
Gunicorn config set up properly

Change the gunicorn configuration based on our learnings
described at: http://docs.gunicorn.org/en/latest/configure.html.

If the gunicorn configuration does not exist, create a
new one configuration file.

Rules:
--> Rule 1
--> Rule 2
--> Rule 3
--> Rule 4
--> Rule 5

1.5.7 Describe a rule by its name

$ hammurabi describe rule "Rule 1"
Rule 1

Ensure that a file exists. If the file does not exists,
this :class:`hammurabi.rules.base.Rule` will create it.

Due to the file is already created by :func:`pre_task_hook`
there is no need to do anything just return the input parameter.

Chain:
--> Rule 1
--> Rule 2
--> Rule 3
--> Rule 4

4 Chapter 1. Hammurabi

Hammurabi Documentation, Release 0.5.0

1.5.8 Getting the execution order of laws and rules

$ hammurabi get order
- Gunicorn config set up properly
--> Rule 1
--> Rule 2
--> Rule 3
--> Rule 4
--> Rule 5

1.6 Custom Rules

Although the project aims to support as many general operations as it can, the need for adding custom rules may arise.

To extend Hammurabi with custom rules, you will need to inherit a class from Rule and define its abstract methods.

The following example will show you how to create and use a custom rule. For more reference please check how the
existing rules are implemented.

custom.py
import shutil
import logging
from hammurabi.mixins import GitMixin
from hammurabi.rules.base import Rule

class CustomOwnerChanged(Rule, GitMixin):
"""
Change the ownership of a file or directory to <original user>:admin.
"""

def __init__(self, name: str, path: Optional[Path] = None, **kwargs):
super().__init__(name, path, **kwargs)

def post_task_hook(self):
self.git_add(self.param)

def task(self) -> Path:
Since ``Rule`` is setting its 2nd parameter to ``self.param``,
we can use ``self.param`` to access the target file's path.
logging.debug('Changing group of "%s" to admin', str(self.param))
shutil.chown(self.param, group="admin")
return self.param

1.7 Contributing

Hurray, You reached this section, which means you are ready to contribute.

Please read our contibuting guideline. This guideline will walk you through how can you successfully contribute to
Hammurabi.

1.6. Custom Rules 5

https://github.com/gabor-boros/hammurabi/blob/master/CONTRIBUTING.rst

Hammurabi Documentation, Release 0.5.0

1.7.1 Installation

For development you will need poetry. After poetry installed, simply run poetry install. This command will both
create the virtualenv and install development dependencies for you.

1.7.2 Useful make Commands

Command Description
help Print available make commands
clean Remove all artifacts
clean-build Remove build artifacts
clean-mypy Remove mypy artifacts
clean-pyc Remove Python artifacts
clean-test Remove test artifacts
docs Generate Sphinx documentation
format Run several formatters
lint Run several linters after format
test Run all tests with coverage
test-unit Run unit tests with coverage
test-integration Run integration tests with coverage

1.8 Why Hammurabi?

Hammurabi was the sixth king in the Babylonian dynasty, which ruled in central Mesopotamia from c. 1894 to 1595
B.C.

The Code of Hammurabi was one of the earliest and most complete written legal codes and was proclaimed by the
Babylonian king Hammurabi, who reigned from 1792 to 1750 B.C. Hammurabi expanded the city-state of Babylon
along the Euphrates River to unite all of southern Mesopotamia. The Hammurabi code of laws, a collection of 282
rules, established standards for commercial interactions and set fines and punishments to meet the requirements of
justice. Hammurabi’s Code was carved onto a massive, finger-shaped black stone stele (pillar) that was looted by
invaders and finally rediscovered in 1901.

6 Chapter 1. Hammurabi

https://python-poetry.org/docs/#installation

CHAPTER

TWO

INSTALLATION

2.1 Stable release

To install Hammurabi, run this command in your terminal:

$ pip install hammurabi

This is the preferred method to install Hammurabi, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for Hammurabi can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/gabor-boros/hammurabi

Or download the tarball:

$ curl -OL https://github.com/gabor-boros/hammurabi/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

7

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/gabor-boros/hammurabi
https://github.com/gabor-boros/hammurabi/tarball/master

Hammurabi Documentation, Release 0.5.0

8 Chapter 2. Installation

CHAPTER

THREE

CONFIGURATION

3.1 Overview

3.2 Hammurabi configuration

You can set the following options in your pyproject.toml config file’s [hammurabi] section. Config op-
tion marked with * (asterisk) is mandatory (set by CLI argument or project config). Hammurabi can be
configured through environment variables too. To use an environment variable based config option set the
HAMMURABI_<CONFIG_OPTION> where <CONFIG_OPTION> is in uppercase and matches one of the options
below.

Config option Description Default value
pillar_config * location of pillar config None
pillar_name name of the pillar variable pillar
log_level logging level of the program INFO
repository git repository (owner/repo) None
git_branch_name working branch name hammurabi
dry_run enforce without any modification False
rule_can_abort if a rule fails it aborts the whole execution False
report_name report file’s name to generate False

For HTTPS git remotes do not forget to set the GIT_USERNAME and GIT_PASSWORD environment variables. For
SSH git remotes please add your ssh key before using Hammurabi.

3.2.1 Examples

Example content of the pyproject.toml file.

[hammurabi]
pillar_config = "/tmp/config/global_config.py"
working_dir = "/tmp/clones/hammurabi"
repository = "gabor-boros/hammurabi"
git_branch_name = "custom-branch-name"
log_level = "WARNING"
rule_can_abort = true
report_name = "hammurabi_report.json"

9

Hammurabi Documentation, Release 0.5.0

3.3 Pillar configuration

The pillar needs no configuration. All the thing the developer must do is creating a hammurabi.pillar.Pillar
object and registering the laws to it.

3.3.1 Using custom rules

Custom rules are not different from built-in one. In case of a custom rule, just import and use it.

3.3.2 Examples

>>> from hammurabi import Law, Pillar
>>> from mycompany.rules import MyCustomRule
>>>
>>> meaning_of_life = Law(
>>> name="...",
>>> description="...",
>>> rules=[MyCustomRule]
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(meaning_of_life)

10 Chapter 3. Configuration

CHAPTER

FOUR

RULES

4.1 Base rule

class hammurabi.rules.base.Rule(name: str, param: Any, preconditions: Iter-
able[hammurabi.preconditions.base.Precondition] = (),
pipe: Optional[Rule] = None, children: Iterable[Rule] = ())

Abstract class which describes the bare minimum and helper functions for Rules. A rule defines what and how
should be executed. Since a rule can have piped and children rules, the “parent” rule is responsible for those
executions. This kind of abstraction allows to run both piped and children rules sequentially in a given order.

Example usage:

>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Rule
>>> from hammurabi.mixins import GitMixin
>>>
>>> class SingleFileRule(Rule, GitMixin):
>>> def __init__(self, name: str, path: Optional[Path] = None, **kwargs):
>>> super().__init__(name, path, **kwargs)
>>>
>>> def post_task_hook(self):
>>> self.git_add(self.param)
>>>
>>> @abstractmethod
>>> def task(self) -> Path:
>>> pass

Parameters

• name (str) – Name of the rule which will be used for printing

• param (Any) – Input parameter of the rule will be used as self.param

• preconditions (Iterable["Rule"]) – “Boolean Rules” which returns a truthy or
falsy value

• pipe (Optional["Rule"]) – Pipe will be called when the rule is executed successfully

• children (Iterable["Rule"]) – Children will be executed after the piped rule if
there is any

11

Hammurabi Documentation, Release 0.5.0

Warning: Preconditions can be used in several ways. The most common way is to run “Boolean Rules”
which takes a parameter and returns a truthy or falsy value. In case of a falsy return, the precondition will
fail and the rule will not be executed.

If any modification is done by any of the rules which are used as a precondition, those changes will be
committed.

4.2 Attributes

4.2.1 OwnerChanged

class hammurabi.rules.attributes.OwnerChanged(name: str, path: Optional[pathlib.Path] =
None, new_value: Optional[str] = None,
**kwargs)

Change the ownership of a file or directory.

The new ownership of a file or directory can be set in three ways. To set only the user use
new_value="username". To set only the group use new_value=":group_name" (please note
the colon :). It is also possible to set both username and group at the same time by using
new_value="username:group_name".

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.2.2 ModeChanged

class hammurabi.rules.attributes.ModeChanged(name: str, path: Optional[pathlib.Path] =
None, new_value: Optional[int] = None,
**kwargs)

Change the mode of a file or directory.

Supported modes:

12 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

Config option Description
stat.S_ISUID Set user ID on execution.
stat.S_ISGID Set group ID on execution.
stat.S_ENFMT Record locking enforced.
stat.S_ISVTX Save text image after execution.
stat.S_IREAD Read by owner.
stat.S_IWRITE Write by owner.
stat.S_IEXEC Execute by owner.
stat.S_IRWXU Read, write, and execute by owner.
stat.S_IRUSR Read by owner.
stat.S_IWUSR Write by owner.
stat.S_IXUSR Execute by owner.
stat.S_IRWXG Read, write, and execute by group.
stat.S_IRGRP Read by group.
stat.S_IWGRP Write by group.
stat.S_IXGRP Execute by group.
stat.S_IRWXO Read, write, and execute by others.
stat.S_IROTH Read by others.
stat.S_IWOTH Write by others.
stat.S_IXOTH Execute by others.

Example usage:

>>> import stat
>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, ModeChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> ModeChanged(
>>> name="Update script must be executable",
>>> path=Path("./scripts/update.sh"),
>>> new_value=stat.S_IXGRP | stat.S_IXGRP | stat.S_IXOTH
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.3 Directories

4.3.1 DirectoryExists

class hammurabi.rules.directories.DirectoryExists(name: str, path: Op-
tional[pathlib.Path] = None,
**kwargs)

Ensure that a directory exists. If the directory does not exists, make sure the directory is created.

Example usage:

4.3. Directories 13

Hammurabi Documentation, Release 0.5.0

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryExists(
>>> name="Create secrets directory",
>>> path=Path("./secrets")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.3.2 DirectoryNotExists

class hammurabi.rules.directories.DirectoryNotExists(name: str, path: Op-
tional[pathlib.Path] = None,
**kwargs)

Ensure that the given directory does not exists.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryNotExists(
>>> name="Remove unnecessary directory",
>>> path=Path("./temp")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.3.3 DirectoryEmptied

class hammurabi.rules.directories.DirectoryEmptied(name: str, path: Op-
tional[pathlib.Path] = None,
**kwargs)

Ensure that the given directory’s content is removed. Please note the difference between emptying a directory
and recreating it. The latter results in lost ACLs, permissions and modes.

Example usage:

14 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryEmptied(
>>> name="Empty results directory",
>>> path=Path("./test-results")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.4 Files

4.4.1 FileExists

class hammurabi.rules.files.FileExists(name: str, path: Optional[pathlib.Path] = None,
**kwargs)

Ensure that a file exists. If the file does not exists, make sure the file is created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create service descriptor",
>>> path=Path("./service.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.4. Files 15

Hammurabi Documentation, Release 0.5.0

4.4.2 FilesExist

class hammurabi.rules.files.FilesExist(name: str, paths: Optional[Iterable[pathlib.Path]] =
(), **kwargs)

Ensure that all files exists. If the files does not exists, make sure the files are created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesExist(
>>> name="Create test files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.4.3 FileNotExists

class hammurabi.rules.files.FileNotExists(name: str, path: Optional[pathlib.Path] =
None, **kwargs)

Ensure that the given file does not exists. If the file exists remove it, otherwise do nothing and return the original
path.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileNotExists(
>>> name="Remove unused file",
>>> path=Path("./debug.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

16 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

4.4.4 FilesNotExist

class hammurabi.rules.files.FilesNotExist(name: str, paths: Op-
tional[Iterable[pathlib.Path]] = (), **kwargs)

Ensure that the given files does not exist. If the files exist remove them, otherwise do nothing and return the
original paths.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesNotExist(
>>> name="Remove several files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.4.5 FileEmptied

class hammurabi.rules.files.FileEmptied(name: str, path: Optional[pathlib.Path] = None,
**kwargs)

Remove the content of the given file, but keep the file. Please note the difference between emptying a file and
recreating it. The latter results in lost ACLs, permissions and modes.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileEmptied(
>>> name="Empty the check log file",
>>> path=Path("/var/log/service/check.log")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.4. Files 17

Hammurabi Documentation, Release 0.5.0

4.5 Ini files

4.5.1 SectionExists

class hammurabi.rules.ini.SectionExists(name: str, path: Optional[pathlib.Path] = None,
target: Optional[str] = None, options: Iter-
able[Tuple[str, Any]] = (), add_after: bool = True,
**kwargs)

Ensure that the given config section exists. If needed, the rule will create a config section with the given name,
and optionally the specified options. In case options are set, the config options will be assigned to that config
sections.

Similarly to hammurabi.rules.text.LineExists, this rule is able to add a section before or after a
target section. The limitation compared to LineExists is that the SectionExists rule is only able to add
the new entry exactly before or after its target.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionExists(
>>> name="Ensure section exists",
>>> path=Path("./config.ini"),
>>> section="polling",
>>> target="add_after_me",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: When options parameter is set, make sure you are using an iterable tuple. The option keys
must be strings, but there is no limitation for the value. It can be set to anything what the parser can handle.
For more information on the parser, please visit the documentation of configupdater.

18 Chapter 4. Rules

https://configupdater.readthedocs.io/en/latest/

Hammurabi Documentation, Release 0.5.0

4.5.2 SectionNotExists

class hammurabi.rules.ini.SectionNotExists(name: str, path: Optional[pathlib.Path]
= None, section: Optional[str] = None,
**kwargs)

Make sure that the given file not contains the specified line. When a section removed, all the options belonging
to it will be removed too.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionNotExists(
>>> name="Ensure section removed",
>>> path=Path("./config.ini"),
>>> section="invalid",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.5.3 SectionRenamed

class hammurabi.rules.ini.SectionRenamed(name: str, path: Optional[pathlib.Path] = None,
new_name: Optional[str] = None, **kwargs)

Ensure that a section is renamed. None of its options will be changed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionRenamed(
>>> name="Ensure section renamed",
>>> path=Path("./config.ini"),
>>> section="polling",
>>> new_name="fetching",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.5. Ini files 19

Hammurabi Documentation, Release 0.5.0

4.5.4 OptionsExist

class hammurabi.rules.ini.OptionsExist(name: str, path: Optional[pathlib.Path] = None,
options: Iterable[Tuple[str, Any]] = None,
force_value: bool = False, **kwargs)

Ensure that the given config option exists. If needed, the rule will create a config option with the given value. In
case the force_value parameter is set to True, the original values will be replaced by the give ones.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionsExist(
>>> name="Ensure options are changed",
>>> path=Path("./config.ini"),
>>> section="fetching",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>> force_value=True,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: When using the force_value parameter, please note that all the existing option values will
be replaced by those set in options parameter.

4.5.5 OptionsNotExist

class hammurabi.rules.ini.OptionsNotExist(name: str, path: Optional[pathlib.Path] =
None, options: Iterable[str] = (), **kwargs)

Remove one or more option from a section.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionsNotExist(
>>> name="Ensure options are removed",
>>> path=Path("./config.ini"),
>>> section="invalid",

(continues on next page)

20 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> options=(
>>> "remove",
>>> "me",
>>> "please",
>>>)
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.5.6 OptionRenamed

class hammurabi.rules.ini.OptionRenamed(name: str, path: Optional[pathlib.Path] = None,
option: Optional[str] = None, new_name: Op-
tional[str] = None, **kwargs)

Ensure that an option of a section is renamed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionRenamed(
>>> name="Rename an option",
>>> path=Path("./config.ini"),
>>> section="my_section",
>>> option="typo",
>>> new_name="correct",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.6 Operations

4.6.1 Moved

class hammurabi.rules.operations.Moved(name: str, path: Optional[pathlib.Path] = None,
destination: Optional[pathlib.Path] = None,
**kwargs)

Move a file or directory from “A” to “B”.

Example usage:

4.6. Operations 21

Hammurabi Documentation, Release 0.5.0

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Moved
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Moved(
>>> name="Move pyproject.toml to its place",
>>> path=Path("/tmp/generated/pyproject.toml.template"),
>>> destination=Path("./pyproject.toml"), # Notice the rename!
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.6.2 Renamed

class hammurabi.rules.operations.Renamed(name: str, path: Optional[pathlib.Path] = None,
new_name: Optional[str] = None, **kwargs)

This rule is a shortcut for hammurabi.rules.operations.Moved. Instead of destination path a new
name is required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml.bkp",
>>> path=Path("/tmp/generated/pyproject.toml.bkp"),
>>> new_name="pyproject.toml",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

22 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

4.6.3 Copied

class hammurabi.rules.operations.Copied(name: str, path: Optional[pathlib.Path] =
None, destination: Optional[pathlib.Path] = None,
**kwargs)

Ensure that the given file or directory is copied to the new path.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Copied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Copied(
>>> name="Create backup file",
>>> path=Path("./service.yaml"),
>>> destination=Path("./service.bkp.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.7 Templates

4.7.1 TemplateRendered

class hammurabi.rules.templates.TemplateRendered(name: str, template: Op-
tional[pathlib.Path] = None, destina-
tion: Optional[pathlib.Path] = None,
context: Optional[Dict[str, Any]] =
None, **kwargs)

Render a file from a Jinja2 template. In case the destination file not exists, this rule will create it, otherwise the
file will be overridden.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TemplateRendered
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TemplateRendered(
>>> name="Create gunicorn config from template",
>>> template=Path("/tmp/templates/gunicorn.conf.py"),
>>> destination=Path("./gunicorn.conf.py"),
>>> context={
>>> "keepalive": 65
>>> },

(continues on next page)

4.7. Templates 23

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.8 Text files

4.8.1 LineExists

class hammurabi.rules.text.LineExists(name: str, path: Optional[pathlib.Path] = None, text:
Optional[str] = None, criteria: Optional[str] = None,
target: Optional[str] = None, position: int = 1, re-
spect_indentation: bool = True, **kwargs)

Make sure that the given file contains the required line. This rule is capable for inserting the expected text before
or after the unique target text respecting the indentation of its context.

The default behaviour is to insert the required text exactly after the target line, and respect its indentation. Please
note that text, criteria and target parameters are required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineExists(
>>> name="Extend gunicorn config",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>> criteria=r"^keepalive.*",
>>> target=r"^bind.*",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note: The indentation of the target text will be extracted by a simple regular expression. If a more complex
regexp is required, please inherit from this class.

24 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

4.8.2 LineNotExists

class hammurabi.rules.text.LineNotExists(name: str, path: Optional[pathlib.Path] = None,
text: Optional[str] = None, **kwargs)

Make sure that the given file not contains the specified line.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineNotExists(
>>> name="Remove keepalive",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.8.3 LineReplaced

class hammurabi.rules.text.LineReplaced(name: str, path: Optional[pathlib.Path] = None,
text: Optional[str] = None, target: Optional[str]
= None, respect_indentation: bool = True,
**kwargs)

Make sure that the given text is replaced in the given file.

The default behaviour is to replace the required text with the exact same indentation that the target line has.
This behaviour can be turned off by setting the respect_indentation parameter to False. Please note that
text and target parameters are required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineReplaced
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineReplaced(
>>> name="Replace typo using regex",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>> target=r"^kepalive.*",
>>>),
>>>)
>>>)
>>>

(continues on next page)

4.8. Text files 25

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> pillar = Pillar()
>>> pillar.register(example_law)

Note: The indentation of the target text will be extracted by a simple regular expression. If a more complex
regexp is required, please inherit from this class.

Warning: This rule will replace all the matching lines in the given file. Make sure the given target regular
expression is tested before the rule used against production code.

4.9 YAML files

4.9.1 YAMLKeyExists

class hammurabi.rules.yaml.YAMLKeyExists(name: str, path: Optional[pathlib.Path] = None,
key: str = '', value: Union[None, list, dict, str, int,
float] = None, **kwargs)

Ensure that the given key exists. If needed, the rule will create a key with the given name, and optionally the
specified value. In case the value is set, the value will be assigned to the key. If no value is set, the key will be
created with an empty value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.yaml"),
>>> key="stack",
>>> value="my-awesome-stack",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a key
before or after a target.

26 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

4.9.2 YAMLKeyNotExists

class hammurabi.rules.yaml.YAMLKeyNotExists(name: str, path: Optional[pathlib.Path] =
None, key: str = '', **kwargs)

Ensure that the given key not exists. If needed, the rule will remove a key with the given name, including its
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.yaml"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.9.3 YAMLKeyRenamed

class hammurabi.rules.yaml.YAMLKeyRenamed(name: str, path: Optional[pathlib.Path] =
None, key: str = '', new_name: str = '',
**kwargs)

Ensure that the given key is renamed. In case the key can not be found, a LookupError exception will be
raised to stop the execution. The execution must be stopped at this point, because if other rules depending on
the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.9. YAML files 27

Hammurabi Documentation, Release 0.5.0

4.9.4 YAMLValueExists

class hammurabi.rules.yaml.YAMLValueExists(name: str, path: Optional[pathlib.Path] =
None, key: str = '', value: Union[None, list,
dict, str, int, float] = None, **kwargs)

Ensure that the given key has the expected value(s). In case the key cannot be found, a LookupError excep-
tion will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For more information please read the
warning below.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> YAMLValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.yaml"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> YAMLValueExists(
>>> name="Add support info",
>>> path=Path("./service.yaml"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> YAMLValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.yaml"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: Since the value can be anything from None to a list of lists, and rule piping passes the 1st
argument (path) to the next rule the value parameter can not be defined in __init__ before the path.
Hence the value parameter must have a default value. The default value is set to None, which translates
to the following:

28 Chapter 4. Rules

Hammurabi Documentation, Release 0.5.0

Using the YAMLValueExists rule and not assigning value to value parameter will set the matching
key’s value to None` by default in the document.

4.9.5 YAMLValueNotExists

class hammurabi.rules.yaml.YAMLValueNotExists(name: str, path: Optional[pathlib.Path] =
None, key: str = '', value: Union[str, int,
float] = None, **kwargs)

Ensure that the key has no value given. In case the key cannot be found, a LookupError exception will be
raised to stop the execution.

Compared to hammurabi.rules.yaml.YAMLValueExists, this rule can only accept simple value for
its value parameter. No list, dict, or None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types) value provided in the value
parameter the value is:

1. Set to None (if the key’s value’s type is not a dict or list)

2. Removed from the list (if the key’s value’s type is a list)

3. Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

4.9. YAML files 29

Hammurabi Documentation, Release 0.5.0

30 Chapter 4. Rules

CHAPTER

FIVE

PRECONDITIONS

5.1 Base precondition

class hammurabi.preconditions.base.Precondition(name: Optional[str] = None, param:
Optional[Any] = None)

This class which describes the bare minimum and helper functions for Preconditions. A precondition defines
what and how should be checked/validated before executing a Rule. Since preconditions are special rules, all
the functions available what can be used for hammurabi.rules.base.AbstractRule.

As said, preconditions are special from different angles. While this is not true for Rules, Preconditions will
always have a name, hence giving a name to a Precondition is not necessary. In case no name given to a
precondition, the name will be the name of the class and ” precondition” suffix.

Example usage:

>>> import logging
>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Precondition
>>>
>>> class IsFileExists(Precondition):
>>> def __init__(self, path: Optional[Path] = None, **kwargs):
>>> super().__init__(None, path, **kwargs)
>>>
>>> def task(self) -> bool:
>>> return self.param and self.param.exists()

Parameters

• name (Optional[str]) – Name of the rule which will be used for printing

• param (Any) – Input parameter of the rule will be used as self.param

31

Hammurabi Documentation, Release 0.5.0

32 Chapter 5. Preconditions

CHAPTER

SIX

REPORTERS

6.1 Base reporter

class hammurabi.reporters.base.Reporter(laws: List[hammurabi.law.Law])
Abstract class which describes the bare minimum and helper functions for Reporters. A reporter can generate
different outputs from the results of the execution. Also, reporters can be extended by additional data which may
not contain data for every execution like GitHub pull request url. The report file’s name set by report_name
config parameter.

Note: Reporters measures the execution time for the complete execution from checking out the git branch until
the pull request creation finished. Although the completion time is measured, it is not detailed for the rules. At
this moment measuring execution time of rules is not planned.

Example usage:

>>> from hammurabi.reporters.base import Reporter
>>>
>>>
>>> class JSONReporter(Reporter):
>>> def report(self) -> str:
>>> return self._get_report().json()

Parameters laws (Iterable[Law]) – Iterable Law objects which will be included to the report

6.2 Formatted reporters

6.2.1 JSONReporter

class hammurabi.reporters.json.JSONReporter(laws: List[hammurabi.law.Law])
Generate reports in JSON format and write into file. JSONReporter is the default reporter of the pillar. The
example below shows the way how to replace a reporter which could base on the JSONReporter.

The report will be written into the configured report file. The report file’s name set by report_name config
parameter.

Example usage:

33

Hammurabi Documentation, Release 0.5.0

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>> from my_company import MyJSONReporter
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> # override pillar's default JSONReporter reporter
>>> pillar = Pillar(reporter_class=MyJSONReporter)

34 Chapter 6. Reporters

CHAPTER

SEVEN

HAMMURABI

7.1 hammurabi package

7.1.1 Subpackages

hammurabi.preconditions package

Submodules

hammurabi.preconditions.base module

This module contains the definition of Preconditions which describes what to do with the received parameter and does
the necessary changes. The preconditions are used to enable developers skipping or enabling rules based on a set of
conditions.

Warning: The precondition is for checking that a rule should or shouldn’t run, not for breaking/aborting the
execution. To indicate a precondition failure as an error in the logs, create a precondition which raises an exception
if the requirements doesn’t match.

class hammurabi.preconditions.base.Precondition(name: Optional[str] = None, param:
Optional[Any] = None)

Bases: hammurabi.rules.abstract.AbstractRule, abc.ABC

This class which describes the bare minimum and helper functions for Preconditions. A precondition defines
what and how should be checked/validated before executing a Rule. Since preconditions are special rules, all
the functions available what can be used for hammurabi.rules.base.AbstractRule.

As said, preconditions are special from different angles. While this is not true for Rules, Preconditions will
always have a name, hence giving a name to a Precondition is not necessary. In case no name given to a
precondition, the name will be the name of the class and ” precondition” suffix.

Example usage:

>>> import logging
>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Precondition
>>>
>>> class IsFileExists(Precondition):
>>> def __init__(self, path: Optional[Path] = None, **kwargs):

(continues on next page)

35

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> super().__init__(None, path, **kwargs)
>>>
>>> def task(self) -> bool:
>>> return self.param and self.param.exists()

Parameters

• name (Optional[str]) – Name of the rule which will be used for printing

• param (Any) – Input parameter of the rule will be used as self.param

execute()→ bool
Execute the precondition.

Raise AssertionError

Returns None

made_changes

name

param

abstract task()→ bool
Abstract method representing how a hammurabi.rules.base.Precondition.task() must be
parameterized. Any difference in the parameters or return type will result in pylint/mypy errors.

To be able to use the power of pipe and children, return something which can be generally used for
other rules as in input.

Returns Returns an output which can be used as an input for other rules

Return type Any (usually same as self.param’s type)

Module contents

hammurabi.reporters package

Submodules

hammurabi.reporters.base module

This module contains the definition of Reporters which is responsible for exposing the execution results in several
formats.

class hammurabi.reporters.base.AdditionalData
Bases: pydantic.main.BaseModel

Additional data which may not be set for every execution.

finished: str = None

pull_request_url: str = None

started: str = None

36 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

class hammurabi.reporters.base.LawItem
Bases: pydantic.main.BaseModel

LawItem represents the basic summary of a low attached to a rule.

description: str = None

name: str = None

class hammurabi.reporters.base.Report
Bases: pydantic.main.BaseModel

The report object which contains all the necessary and optional data for the report will be generated.

additional_data: AdditionalData = None

failed: List[RuleItem] = None

passed: List[RuleItem] = None

skipped: List[RuleItem] = None

class hammurabi.reporters.base.Reporter(laws: List[hammurabi.law.Law])
Bases: abc.ABC

Abstract class which describes the bare minimum and helper functions for Reporters. A reporter can generate
different outputs from the results of the execution. Also, reporters can be extended by additional data which may
not contain data for every execution like GitHub pull request url. The report file’s name set by report_name
config parameter.

Note: Reporters measures the execution time for the complete execution from checking out the git branch until
the pull request creation finished. Although the completion time is measured, it is not detailed for the rules. At
this moment measuring execution time of rules is not planned.

Example usage:

>>> from hammurabi.reporters.base import Reporter
>>>
>>>
>>> class JSONReporter(Reporter):
>>> def report(self) -> str:
>>> return self._get_report().json()

Parameters laws (Iterable[Law]) – Iterable Law objects which will be included to the report

abstract report()→ Any
Do the actual reporting based on the report assembled.

class hammurabi.reporters.base.RuleItem
Bases: pydantic.main.BaseModel

RuleItem represents the registered rule and its status.

The rule (as normally) has the status of the execution which can be passed, failed or skipped.

law: LawItem = None

name: str = None

7.1. hammurabi package 37

Hammurabi Documentation, Release 0.5.0

hammurabi.reporters.json module

class hammurabi.reporters.json.JSONReporter(laws: List[hammurabi.law.Law])
Bases: hammurabi.reporters.base.Reporter

Generate reports in JSON format and write into file. JSONReporter is the default reporter of the pillar. The
example below shows the way how to replace a reporter which could base on the JSONReporter.

The report will be written into the configured report file. The report file’s name set by report_name config
parameter.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>> from my_company import MyJSONReporter
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> # override pillar's default JSONReporter reporter
>>> pillar = Pillar(reporter_class=MyJSONReporter)

report()→ None
Do the actual reporting based on the report assembled in JSON format. The report will be written into the
configured report file.

Module contents

hammurabi.rules package

Submodules

hammurabi.rules.abstract module

This module contains the definition of the AbstractRule which describes what is shared between Rules and Precondi-
tions.

class hammurabi.rules.abstract.AbstractRule(name: str, param: Any)
Bases: abc.ABC

Abstract class which describes the common behaviour for any kind of rule even it is a hammurabi.rules.
base.Rule or hammurabi.rules.base.Precondition

Parameters

• name (str) – Name of the rule which will be used for printing

• param (Any) – Input parameter of the rule will be used as self.param

38 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

property description
Return the description of the hammurabi.rules.base.Rule.task() based on its docstring.

Returns Stripped description of hammurabi.rules.base.Rule.task()

Return type str

Note: As of this property returns the docstring of hammurabi.rules.base.Rule.task()
method, it worth to take care of its description when initialized.

property documentation
Return the documentation of the rule based on its name, docstring and the description of its task.

Returns Concatenation of the rule’s name, docstring, and task description

Return type str

Note: As of this method returns the name and docstring of the rule it worth to take care of its name and
description when initialized.

made_changes

name

param

post_task_hook()
Run code after the hammurabi.rules.base.Rule.task() has been performed. To access
the parameter passed to the rule, always use self.param for hammurabi.rules.base.Rule.
post_task_hook().

Note: This method can be used for execution of git commands like git add, or double checking a modifi-
cation made.

Warning: This method is not called in dry run mode.

pre_task_hook()
Run code before performing the hammurabi.rules.base.Rule.task(). To access the pa-
rameter passed to the rule, always use self.param for hammurabi.rules.base.Rule.
pre_task_hook().

Warning: This method is not called in dry run mode.

abstract task()→ Any
Abstract method representing how a hammurabi.rules.base.Rule.task() or hammurabi.
preconditions.base.Precondition.task() must be parameterized. Any difference in the
parameters will result in pylint/mypy errors.

To be able to use the power of pipe and children, return something which can be generally used for
other rules as in input.

Returns Returns an output which can be used as an input for other rules

7.1. hammurabi package 39

Hammurabi Documentation, Release 0.5.0

Return type Any (usually same as self.param’s type)

Note: Although it is a good practice to return the same type for the output that the input has, but this is not
the case for “Boolean Rules”. “Boolean Rules” should return True (or truthy) or False (or falsy) values.

static validate(val: Any, cast_to: Optional[Any] = None, required=False)→ Any
Validate and/or cast the given value to another type. In case the existence of the value is required or casting
failed an exception will be raised corresponding to the failure.

Parameters

• val (Any) – Value to validate

• cast_to (Any) – Type in which the value should be returned

• required (bool) – Check that the value is not falsy

Raise ValueError if the given value is required but falsy

Returns Returns the value in its original or casted type

Return type Any

Example usage:

>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Rule
>>>
>>> class MyAwesomeRule(Rule):
>>> def __init__(self, name: str, param: Optional[Path] = None):
>>> self.param = self.validate(param, required=True)
>>>
>>> # Other method definitions ...
>>>

hammurabi.rules.attributes module

Attributes module contains file and directory attribute manipulation rules which can be handy after creating new files
or directories or even when adding execute permissions for a script in the project.

class hammurabi.rules.attributes.ModeChanged(name: str, path: Optional[pathlib.Path] =
None, new_value: Optional[int] = None,
**kwargs)

Bases: hammurabi.rules.attributes.SingleAttributeRule

Change the mode of a file or directory.

Supported modes:

40 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

Config option Description
stat.S_ISUID Set user ID on execution.
stat.S_ISGID Set group ID on execution.
stat.S_ENFMT Record locking enforced.
stat.S_ISVTX Save text image after execution.
stat.S_IREAD Read by owner.
stat.S_IWRITE Write by owner.
stat.S_IEXEC Execute by owner.
stat.S_IRWXU Read, write, and execute by owner.
stat.S_IRUSR Read by owner.
stat.S_IWUSR Write by owner.
stat.S_IXUSR Execute by owner.
stat.S_IRWXG Read, write, and execute by group.
stat.S_IRGRP Read by group.
stat.S_IWGRP Write by group.
stat.S_IXGRP Execute by group.
stat.S_IRWXO Read, write, and execute by others.
stat.S_IROTH Read by others.
stat.S_IWOTH Write by others.
stat.S_IXOTH Execute by others.

Example usage:

>>> import stat
>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, ModeChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> ModeChanged(
>>> name="Update script must be executable",
>>> path=Path("./scripts/update.sh"),
>>> new_value=stat.S_IXGRP | stat.S_IXGRP | stat.S_IXOTH
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Change the mode of the given file or directory.

Returns Return the input path as an output

Return type Path

7.1. hammurabi package 41

Hammurabi Documentation, Release 0.5.0

class hammurabi.rules.attributes.OwnerChanged(name: str, path: Optional[pathlib.Path] =
None, new_value: Optional[str] = None,
**kwargs)

Bases: hammurabi.rules.attributes.SingleAttributeRule

Change the ownership of a file or directory.

The new ownership of a file or directory can be set in three ways. To set only the user use
new_value="username". To set only the group use new_value=":group_name" (please note
the colon :). It is also possible to set both username and group at the same time by using
new_value="username:group_name".

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Change the ownership of the given file or directory. None of the new username or group name can contain
colons, otherwise only the first two colon separated values will be used as username and group name.

Returns Return the input path as an output

Return type Path

class hammurabi.rules.attributes.SingleAttributeRule(name: str, path: Op-
tional[pathlib.Path] = None,
new_value: Optional[str] =
None, **kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Extend hammurabi.rules.base.Rule to handle attributes of a single file or directory.

made_changes

name

param

post_task_hook()
Run code after the hammurabi.rules.base.Rule.task() has been performed. To access

42 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

the parameter passed to the rule, always use self.param for hammurabi.rules.base.Rule.
post_task_hook().

Note: This method can be used for execution of git commands like git add, or double checking a modifi-
cation made.

Warning: This method is not called in dry run mode.

abstract task()→ Any
Abstract method representing how a hammurabi.rules.base.Rule.task() must be parameter-
ized. Any difference in the parameters will result in pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.base module

This module contains the definition of Rule which describes what to do with the received parameter and does the
necessary changes.

The Rule is an abstract class which describes all the required methods and parameters, but it can be extended and
customized easily by inheriting from it. A good example for this kind of customization is hammurabi.rules.
text.LineExists which adds more parameters to hammurabi.rules.files.SingleFileRule which
inherits from hammurabi.rules.base.Rule.

class hammurabi.rules.base.Rule(name: str, param: Any, preconditions: Iter-
able[hammurabi.preconditions.base.Precondition] = (),
pipe: Optional[Rule] = None, children: Iterable[Rule] = ())

Bases: hammurabi.rules.abstract.AbstractRule, abc.ABC

Abstract class which describes the bare minimum and helper functions for Rules. A rule defines what and how
should be executed. Since a rule can have piped and children rules, the “parent” rule is responsible for those
executions. This kind of abstraction allows to run both piped and children rules sequentially in a given order.

Example usage:

>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Rule
>>> from hammurabi.mixins import GitMixin
>>>
>>> class SingleFileRule(Rule, GitMixin):
>>> def __init__(self, name: str, path: Optional[Path] = None, **kwargs):
>>> super().__init__(name, path, **kwargs)
>>>
>>> def post_task_hook(self):
>>> self.git_add(self.param)
>>>
>>> @abstractmethod
>>> def task(self) -> Path:
>>> pass

Parameters

• name (str) – Name of the rule which will be used for printing

7.1. hammurabi package 43

Hammurabi Documentation, Release 0.5.0

• param (Any) – Input parameter of the rule will be used as self.param

• preconditions (Iterable["Rule"]) – “Boolean Rules” which returns a truthy or
falsy value

• pipe (Optional["Rule"]) – Pipe will be called when the rule is executed successfully

• children (Iterable["Rule"]) – Children will be executed after the piped rule if
there is any

Warning: Preconditions can be used in several ways. The most common way is to run “Boolean Rules”
which takes a parameter and returns a truthy or falsy value. In case of a falsy return, the precondition will
fail and the rule will not be executed.

If any modification is done by any of the rules which are used as a precondition, those changes will be
committed.

property can_proceed
Evaluate if a rule can continue its execution. In case the execution is called with dry_run config option
set to true, this method will always return False to make sure not performing any changes. If precondi-
tions are set, those will be evaluated by this method.

Returns Return with the result of evaluation

Return type bool

Warning: hammurabi.rules.base.Rule.can_proceed() checks the result of self.
preconditions, which means the preconditions are executed. Make sure that you are not doing
any modifications within rules used as preconditions, otherwise take extra attention for those rules.

execute(param: Optional[Any] = None)
Execute the rule’s task, its piped and children rules as well.

The execution order of task, piped rule and children rules described in but not by hammurabi.rules.
base.Rule.get_rule_chain().

Parameters param (Optional[Any]) – Input parameter of the rule given by the user

Raise AssertionError

Returns None

Note: The input parameter can be optional because of the piped and children rules which are receiving
the output of its parent. In this case the user is not able to set the param manually, since it is calculated.

Warning: If self.can_proceed returns False the whole execution will be stopped immediately
and AssertionError will be raised.

get_execution_order()→ List[Union[Rule, hammurabi.preconditions.base.Precondition]]
Same as hammurabi.rules.base.Rule.get_rule_chain() but for the root rule.

get_rule_chain(rule: Rule)→ List[Union[Rule, hammurabi.preconditions.base.Precondition]]
Get the execution chain of the given rule. The execution order is the following:

44 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

• task (current rule’s hammurabi.rules.base.Rule.task())

• Piped rule

• Children rules (in the order provided by the iterator used)

Parameters rule (hammurabi.rules.base.Rule) – The rule which execution chain
should be returned

Returns Returns the list of rules in the order above

Return type List[Rule]

made_changes

name

param

abstract task()→ Any
See the documentation of hammurabi.rules.base.AbstractRule.task()

hammurabi.rules.common module

class hammurabi.rules.common.MultiplePathRule(name: str, paths: Op-
tional[Iterable[pathlib.Path]] = (),
**kwargs)

Bases: hammurabi.rules.base.Rule, hammurabi.mixins.GitMixin

Abstract class which extends hammurabi.rules.base.Rule to handle operations on multiple files.

made_changes

name

param

post_task_hook()
Run code after the hammurabi.rules.base.Rule.task() has been performed. To access
the parameter passed to the rule, always use self.param for hammurabi.rules.base.Rule.
post_task_hook().

Note: This method can be used for execution of git commands like git add, or double checking a modifi-
cation made.

Warning: This method is not called in dry run mode.

abstract task()→ Any
Abstract method representing how a hammurabi.rules.base.Rule.task() must be parameter-
ized. Any difference in the parameters will result in pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

class hammurabi.rules.common.SinglePathRule(name: str, path: Optional[pathlib.Path] =
None, **kwargs)

Bases: hammurabi.rules.base.Rule, hammurabi.mixins.GitMixin

Abstract class which extends hammurabi.rules.base.Rule to handle operations on a single directory.

7.1. hammurabi package 45

Hammurabi Documentation, Release 0.5.0

made_changes

name

param

post_task_hook()
Run code after the hammurabi.rules.base.Rule.task() has been performed. To access
the parameter passed to the rule, always use self.param for hammurabi.rules.base.Rule.
post_task_hook().

Note: This method can be used for execution of git commands like git add, or double checking a modifi-
cation made.

Warning: This method is not called in dry run mode.

abstract task()→ Any
Abstract method representing how a hammurabi.rules.base.Rule.task() must be parameter-
ized. Any difference in the parameters will result in pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.directories module

Directories module contains directory specific manipulation rules. Please note that those rules which can be used
for files and directories are located in other modules like hammurabi.rules.operations or hammurabi.
rules.attributes.

class hammurabi.rules.directories.DirectoryEmptied(name: str, path: Op-
tional[pathlib.Path] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given directory’s content is removed. Please note the difference between emptying a directory
and recreating it. The latter results in lost ACLs, permissions and modes.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryEmptied(
>>> name="Empty results directory",
>>> path=Path("./test-results")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

46 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

made_changes

name

param

task()→ pathlib.Path
Iterate through the entries of the given directory and remove them. If an entry is a file simply remove it,
otherwise remove the whole subdirectory and its content.

Returns Return the input path as an output

Return type Path

class hammurabi.rules.directories.DirectoryExists(name: str, path: Op-
tional[pathlib.Path] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Ensure that a directory exists. If the directory does not exists, make sure the directory is created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryExists(
>>> name="Create secrets directory",
>>> path=Path("./secrets")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Create the given directory if not exists.

Returns Return the input path as an output

Return type Path

class hammurabi.rules.directories.DirectoryNotExists(name: str, path: Op-
tional[pathlib.Path] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given directory does not exists.

Example usage:

7.1. hammurabi package 47

Hammurabi Documentation, Release 0.5.0

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryNotExists(
>>> name="Remove unnecessary directory",
>>> path=Path("./temp")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

post_task_hook()
Remove the given directory from git index.

task()→ pathlib.Path
Remove the given directory.

Returns Return the input path as an output

Return type Path

hammurabi.rules.files module

Files module contains file specific manipulation rules. Please note that those rules which can be used for files
and directories are located in other modules like hammurabi.rules.operations or hammurabi.rules.
attributes.

class hammurabi.rules.files.FileEmptied(name: str, path: Optional[pathlib.Path] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Remove the content of the given file, but keep the file. Please note the difference between emptying a file and
recreating it. The latter results in lost ACLs, permissions and modes.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileEmptied(
>>> name="Empty the check log file",
>>> path=Path("/var/log/service/check.log")
>>>),

(continues on next page)

48 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Remove the content of the given file. If the file does not exists this rule will create the file without content.

Returns Return the emptied/created file’s path

Return type Path

class hammurabi.rules.files.FileExists(name: str, path: Optional[pathlib.Path] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Ensure that a file exists. If the file does not exists, make sure the file is created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create service descriptor",
>>> path=Path("./service.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
If the target file not exists, create the file to make sure we can manipulate it.

Returns The created/existing file’s path

Return type Path

class hammurabi.rules.files.FileNotExists(name: str, path: Optional[pathlib.Path] =
None, **kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given file does not exists. If the file exists remove it, otherwise do nothing and return the original
path.

7.1. hammurabi package 49

Hammurabi Documentation, Release 0.5.0

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileNotExists(
>>> name="Remove unused file",
>>> path=Path("./debug.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

post_task_hook()
Remove the given file from git index.

task()→ pathlib.Path
Remove the given file if exists, otherwise do nothing and return the original path.

Returns Return the removed file’s path

Return type Path

class hammurabi.rules.files.FilesExist(name: str, paths: Optional[Iterable[pathlib.Path]] =
(), **kwargs)

Bases: hammurabi.rules.common.MultiplePathRule

Ensure that all files exists. If the files does not exists, make sure the files are created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesExist(
>>> name="Create test files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>)
>>>)
>>>

(continues on next page)

50 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ Iterable[pathlib.Path]
If the target files not exist, create the files to make sure we can manipulate them.

Returns The created/existing files’ path

Return type Iterable[Path]

class hammurabi.rules.files.FilesNotExist(name: str, paths: Op-
tional[Iterable[pathlib.Path]] = (), **kwargs)

Bases: hammurabi.rules.common.MultiplePathRule

Ensure that the given files does not exist. If the files exist remove them, otherwise do nothing and return the
original paths.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesNotExist(
>>> name="Remove several files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

post_task_hook()
Remove the given files from git index.

task()→ Iterable[pathlib.Path]
Remove all existing files.

Returns Return the removed files’ paths

Return type Iterable[Path]

7.1. hammurabi package 51

Hammurabi Documentation, Release 0.5.0

hammurabi.rules.ini module

Ini module is an extension for text rules tailor made for .ini/.cfg files. The main difference lies in the way it works.
First, the .ini/.cfg file is parsed, then the modifications are made on the already parsed file.

class hammurabi.rules.ini.OptionRenamed(name: str, path: Optional[pathlib.Path] = None,
option: Optional[str] = None, new_name: Op-
tional[str] = None, **kwargs)

Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that an option of a section is renamed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionRenamed(
>>> name="Rename an option",
>>> path=Path("./config.ini"),
>>> section="my_section",
>>> option="typo",
>>> new_name="correct",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Rename an option of a section. In case a section can not be found, a LookupError exception will be
raised to stop the execution. The execution must be stopped at this point, because if dependant rules will
fail otherwise.

Raises LookupError raised if no section found or both the old and new option names are
found

Returns Return the input path as an output

Return type Path

class hammurabi.rules.ini.OptionsExist(name: str, path: Optional[pathlib.Path] = None,
options: Iterable[Tuple[str, Any]] = None,
force_value: bool = False, **kwargs)

Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that the given config option exists. If needed, the rule will create a config option with the given value. In
case the force_value parameter is set to True, the original values will be replaced by the give ones.

Example usage:

52 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionsExist(
>>> name="Ensure options are changed",
>>> path=Path("./config.ini"),
>>> section="fetching",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>> force_value=True,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: When using the force_value parameter, please note that all the existing option values will
be replaced by those set in options parameter.

made_changes

name

param

task()→ pathlib.Path
Remove one or more option from a section. In case a section can not be found, a LookupError exception
will be raised to stop the execution. The execution must be stopped at this point, because if dependant rules
will fail otherwise.

Raises LookupError raised if no section can be renamed

Returns Return the input path as an output

Return type Path

class hammurabi.rules.ini.OptionsNotExist(name: str, path: Optional[pathlib.Path] =
None, options: Iterable[str] = (), **kwargs)

Bases: hammurabi.rules.ini.SingleConfigFileRule

Remove one or more option from a section.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(

(continues on next page)

7.1. hammurabi package 53

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> OptionsNotExist(
>>> name="Ensure options are removed",
>>> path=Path("./config.ini"),
>>> section="invalid",
>>> options=(
>>> "remove",
>>> "me",
>>> "please",
>>>)
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Remove one or more option from a section. In case a section can not be found, a LookupError exception
will be raised to stop the execution. The execution must be stopped at this point, because if dependant rules
will fail otherwise.

Raises LookupError raised if no section can be renamed

Returns Return the input path as an output

Return type Path

class hammurabi.rules.ini.SectionExists(name: str, path: Optional[pathlib.Path] = None,
target: Optional[str] = None, options: Iter-
able[Tuple[str, Any]] = (), add_after: bool = True,
**kwargs)

Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that the given config section exists. If needed, the rule will create a config section with the given name,
and optionally the specified options. In case options are set, the config options will be assigned to that config
sections.

Similarly to hammurabi.rules.text.LineExists, this rule is able to add a section before or after a
target section. The limitation compared to LineExists is that the SectionExists rule is only able to add
the new entry exactly before or after its target.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionExists(
>>> name="Ensure section exists",
>>> path=Path("./config.ini"),

(continues on next page)

54 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> section="polling",
>>> target="add_after_me",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: When options parameter is set, make sure you are using an iterable tuple. The option keys
must be strings, but there is no limitation for the value. It can be set to anything what the parser can handle.
For more information on the parser, please visit the documentation of configupdater.

made_changes

name

param

task()→ pathlib.Path
Ensure that the given config section exists. If needed, create a config section with the given name, and
optionally the specified options.

Returns Return the input path as an output

Return type Path

class hammurabi.rules.ini.SectionNotExists(name: str, path: Optional[pathlib.Path]
= None, section: Optional[str] = None,
**kwargs)

Bases: hammurabi.rules.ini.SingleConfigFileRule

Make sure that the given file not contains the specified line. When a section removed, all the options belonging
to it will be removed too.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionNotExists(
>>> name="Ensure section removed",
>>> path=Path("./config.ini"),
>>> section="invalid",
>>>),
>>>)
>>>)
>>>

(continues on next page)

7.1. hammurabi package 55

https://configupdater.readthedocs.io/en/latest/

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Remove the given section including its options from the config file.

Returns Return the input path as an output

Return type Path

class hammurabi.rules.ini.SectionRenamed(name: str, path: Optional[pathlib.Path] = None,
new_name: Optional[str] = None, **kwargs)

Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that a section is renamed. None of its options will be changed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionRenamed(
>>> name="Ensure section renamed",
>>> path=Path("./config.ini"),
>>> section="polling",
>>> new_name="fetching",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Rename the given section to a new name. None of its options will be changed. In case a section can not be
found, a LookupError exception will be raised to stop the execution. The execution must be stopped at
this point, because if other rules depending on the rename they will fail otherwise.

Raises LookupError if we can not decide or can not find what should be renamed

Returns Return the input path as an output

Return type Path

56 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

class hammurabi.rules.ini.SingleConfigFileRule(name: str, path: Optional[pathlib.Path]
= None, section: Optional[str] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Extend hammurabi.rules.base.Rule to handle parsed content manipulations on a single file.

made_changes

name

param

pre_task_hook()
Parse the configuration file for later use.

abstract task()→ Any
Abstract method representing how a hammurabi.rules.base.Rule.task() must be parameter-
ized. Any difference in the parameters will result in pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.mixins module

class hammurabi.rules.mixins.SelectorMixin
Bases: object

This mixin contains the helper function to get a value from dict by a css selector like selector path. (.example.
path.to.key)

hammurabi.rules.operations module

Operations module contains common file/directory operation which can be handy when need to move, rename or copy
files.

class hammurabi.rules.operations.Copied(name: str, path: Optional[pathlib.Path] =
None, destination: Optional[pathlib.Path] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given file or directory is copied to the new path.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Copied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Copied(
>>> name="Create backup file",
>>> path=Path("./service.yaml"),
>>> destination=Path("./service.bkp.yaml")
>>>),
>>>)
>>>)

(continues on next page)

7.1. hammurabi package 57

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

post_task_hook()
Add the destination and not the original path.

task()→ pathlib.Path
Copy the given file or directory to a new place.

Returns Returns the path of the copied file/directory

Return type Path

class hammurabi.rules.operations.Moved(name: str, path: Optional[pathlib.Path] = None,
destination: Optional[pathlib.Path] = None,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Move a file or directory from “A” to “B”.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Moved
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Moved(
>>> name="Move pyproject.toml to its place",
>>> path=Path("/tmp/generated/pyproject.toml.template"),
>>> destination=Path("./pyproject.toml"), # Notice the rename!
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

post_task_hook()
Add both the new and old git objects.

task()→ pathlib.Path
Move the given path to the destination. In case the file got a new name when destination is provided, the
file/directory will be moved to its new place with its new name.

Returns Returns the new destination of the file/directory

58 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

Return type Path

class hammurabi.rules.operations.Renamed(name: str, path: Optional[pathlib.Path] = None,
new_name: Optional[str] = None, **kwargs)

Bases: hammurabi.rules.operations.Moved

This rule is a shortcut for hammurabi.rules.operations.Moved. Instead of destination path a new
name is required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml.bkp",
>>> path=Path("/tmp/generated/pyproject.toml.bkp"),
>>> new_name="pyproject.toml",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

hammurabi.rules.templates module

Templates module contains rules which are capable to create a new file based on a Jinja2 template by rendering it.

class hammurabi.rules.templates.TemplateRendered(name: str, template: Op-
tional[pathlib.Path] = None, destina-
tion: Optional[pathlib.Path] = None,
context: Optional[Dict[str, Any]] =
None, **kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Render a file from a Jinja2 template. In case the destination file not exists, this rule will create it, otherwise the
file will be overridden.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TemplateRendered
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TemplateRendered(

(continues on next page)

7.1. hammurabi package 59

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> name="Create gunicorn config from template",
>>> template=Path("/tmp/templates/gunicorn.conf.py"),
>>> destination=Path("./gunicorn.conf.py"),
>>> context={
>>> "keepalive": 65
>>> },
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

post_task_hook()
Add the destination and not the original path.

task()→ pathlib.Path
Render a file from a Jinja2 template. In case the destination file not exists, this rule will create it, otherwise
the file will be overridden.

Returns Returns the path of the rendered file

Return type Path

hammurabi.rules.text module

Text module contains simple but powerful general file content manipulations. Combined with other simple rules
like hammurabi.rules.files.FileExists or hammurabi.rules.attributes.ModeChanged al-
most anything can be achieved. Although any file’s content can be changed using these rules, for common file formats
like ini, yaml or json dedicated rules are created.

class hammurabi.rules.text.LineExists(name: str, path: Optional[pathlib.Path] = None, text:
Optional[str] = None, criteria: Optional[str] = None,
target: Optional[str] = None, position: int = 1, re-
spect_indentation: bool = True, **kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Make sure that the given file contains the required line. This rule is capable for inserting the expected text before
or after the unique target text respecting the indentation of its context.

The default behaviour is to insert the required text exactly after the target line, and respect its indentation. Please
note that text, criteria and target parameters are required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(

(continues on next page)

60 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>> LineExists(
>>> name="Extend gunicorn config",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>> criteria=r"^keepalive.*",
>>> target=r"^bind.*",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note: The indentation of the target text will be extracted by a simple regular expression. If a more complex
regexp is required, please inherit from this class.

made_changes

name

param

task()→ pathlib.Path
Make sure that the given file contains the required line. This rule is capable for inserting the expected rule
before or after the unique target text respecting the indentation of its context.

Raises LookupError

Returns Returns the path of the modified file

Return type Path

class hammurabi.rules.text.LineNotExists(name: str, path: Optional[pathlib.Path] = None,
text: Optional[str] = None, **kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Make sure that the given file not contains the specified line.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineNotExists(
>>> name="Remove keepalive",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

7.1. hammurabi package 61

Hammurabi Documentation, Release 0.5.0

made_changes

name

param

task()→ pathlib.Path
Make sure that the given file not contains the specified line based on the given criteria.

Returns Returns the path of the modified file

Return type Path

class hammurabi.rules.text.LineReplaced(name: str, path: Optional[pathlib.Path] = None,
text: Optional[str] = None, target: Optional[str]
= None, respect_indentation: bool = True,
**kwargs)

Bases: hammurabi.rules.common.SinglePathRule

Make sure that the given text is replaced in the given file.

The default behaviour is to replace the required text with the exact same indentation that the target line has.
This behaviour can be turned off by setting the respect_indentation parameter to False. Please note that
text and target parameters are required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineReplaced
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineReplaced(
>>> name="Replace typo using regex",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>> target=r"^kepalive.*",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note: The indentation of the target text will be extracted by a simple regular expression. If a more complex
regexp is required, please inherit from this class.

Warning: This rule will replace all the matching lines in the given file. Make sure the given target regular
expression is tested before the rule used against production code.

made_changes

name

param

62 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

task()→ pathlib.Path
Make sure that the given text is replaced in the given file.

Raises LookupError if we can not decide or can not find what should be replaced

Returns Returns the path of the modified file

Return type Path

hammurabi.rules.yaml module

This module adds YAML file support. YAML module is an extension for text rules tailor made for .yaml/.yml files.
The main difference lies in the way it works. First, the .yaml/.yml file is parsed, then the modifications are made on
the already parsed file.

class hammurabi.rules.yaml.SingleDocumentYAMLFileRule(name: str, path: Op-
tional[pathlib.Path] = None,
key: str = '', **kwargs)

Bases: hammurabi.rules.common.SinglePathRule, hammurabi.rules.mixins.
SelectorMixin

Extend hammurabi.rules.base.Rule to handle parsed content manipulations on a single file.

made_changes

name

param

pre_task_hook()→ None
Parse the yaml file for later use.

abstract task()→ pathlib.Path
Abstract method representing how a hammurabi.rules.base.Rule.task() must be parameter-
ized. Any difference in the parameters will result in pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

class hammurabi.rules.yaml.YAMLKeyExists(name: str, path: Optional[pathlib.Path] = None,
key: str = '', value: Union[None, list, dict, str, int,
float] = None, **kwargs)

Bases: hammurabi.rules.yaml.SingleDocumentYAMLFileRule

Ensure that the given key exists. If needed, the rule will create a key with the given name, and optionally the
specified value. In case the value is set, the value will be assigned to the key. If no value is set, the key will be
created with an empty value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.yaml"),
>>> key="stack",
>>> value="my-awesome-stack",

(continues on next page)

7.1. hammurabi package 63

Hammurabi Documentation, Release 0.5.0

(continued from previous page)

>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a key
before or after a target.

made_changes

name

param

task()→ pathlib.Path
Ensure that the given key exists in the yaml file. If needed, create the key with the given name, and
optionally the specified value.

Returns Return the input path as an output

Return type Path

class hammurabi.rules.yaml.YAMLKeyNotExists(name: str, path: Optional[pathlib.Path] =
None, key: str = '', **kwargs)

Bases: hammurabi.rules.yaml.SingleDocumentYAMLFileRule

Ensure that the given key not exists. If needed, the rule will remove a key with the given name, including its
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.yaml"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Ensure that the given key does not exists in the yaml file.

64 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

Returns Return the input path as an output

Return type Path

class hammurabi.rules.yaml.YAMLKeyRenamed(name: str, path: Optional[pathlib.Path] =
None, key: str = '', new_name: str = '',
**kwargs)

Bases: hammurabi.rules.yaml.SingleDocumentYAMLFileRule

Ensure that the given key is renamed. In case the key can not be found, a LookupError exception will be
raised to stop the execution. The execution must be stopped at this point, because if other rules depending on
the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

name

param

task()→ pathlib.Path
Ensure that the given key is renamed. In case the key can not be found, a LookupError exception will be
raised to stop the execution. The execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

Raises LookupError raised if no key can be renamed or both the new and old keys are in the
config file

Returns Return the input path as an output

Return type Path

class hammurabi.rules.yaml.YAMLValueExists(name: str, path: Optional[pathlib.Path] =
None, key: str = '', value: Union[None, list,
dict, str, int, float] = None, **kwargs)

Bases: hammurabi.rules.yaml.SingleDocumentYAMLFileRule

Ensure that the given key has the expected value(s). In case the key cannot be found, a LookupError excep-
tion will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For more information please read the
warning below.

7.1. hammurabi package 65

Hammurabi Documentation, Release 0.5.0

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> YAMLValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.yaml"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> YAMLValueExists(
>>> name="Add support info",
>>> path=Path("./service.yaml"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> YAMLValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.yaml"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: Since the value can be anything from None to a list of lists, and rule piping passes the 1st
argument (path) to the next rule the value parameter can not be defined in __init__ before the path.
Hence the value parameter must have a default value. The default value is set to None, which translates
to the following:

Using the YAMLValueExists rule and not assigning value to value parameter will set the matching
key’s value to None` by default in the document.

made_changes

name

param

task()→ pathlib.Path
Ensure that the given key has the expected value(s). In case the key cannot be found, a LookupError

66 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

exception will be raised to stop the execution.

Warning: Since the value can be anything from None to a list of lists, and rule piping passes the 1st
argument (path) to the next rule the value parameter can not be defined in __init__ before the
path. Hence the value parameter must have a default value. The default value is set to None, which
translates to the following:

Using the YAMLValueExists rule and not assigning value to value parameter will set the match-
ing key’s value to None` by default in the document.

Raises LookupError raised if no key can be renamed or both the new and old keys are in the
config file

Returns Return the input path as an output

Return type Path

class hammurabi.rules.yaml.YAMLValueNotExists(name: str, path: Optional[pathlib.Path] =
None, key: str = '', value: Union[str, int,
float] = None, **kwargs)

Bases: hammurabi.rules.yaml.SingleDocumentYAMLFileRule

Ensure that the key has no value given. In case the key cannot be found, a LookupError exception will be
raised to stop the execution.

Compared to hammurabi.rules.yaml.YAMLValueExists, this rule can only accept simple value for
its value parameter. No list, dict, or None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types) value provided in the value
parameter the value is:

1. Set to None (if the key’s value’s type is not a dict or list)

2. Removed from the list (if the key’s value’s type is a list)

3. Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YAMLValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YAMLValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

made_changes

7.1. hammurabi package 67

Hammurabi Documentation, Release 0.5.0

name

param

task()→ pathlib.Path
Ensure that the key has no value given. In case the key cannot be found, a LookupError exception will
be raised to stop the execution.

Based on the key’s value’s type if the value contains (or equals for simple types) value provided in the
value parameter the value is: 1. Set to None (if the key’s value’s type is not a dict or list) 2. Removed
from the list (if the key’s value’s type is a list) 3. Removed from the dict (if the key’s value’s type is a dict)

Returns Return the input path as an output

Return type Path

Module contents

7.1.2 Submodules

7.1.3 hammurabi.config module

class hammurabi.config.CommonSettings
Bases: pydantic.env_settings.BaseSettings

Common settings which applies to both TOML and CLI configuration of Hammurabi.

Pillar configuration is intentionally not listed since it is represented as a string in the TOML configuration,
but used the parsed variable in the CLI configuration.

class Config
Bases: object

BaseSettings’ config describing how the settings will be handled. The given env_prefix will make sure
that settings can be read from environment variables starting with HAMMURABI_.

env_prefix = 'hammurabi_'

dry_run: bool = None

git_base_name: str = None

git_branch_name: str = None

report_name: Path = None

repository: str = None

rule_can_abort: bool = None

class hammurabi.config.Config
Bases: object

Simple configuration object which used across Hammurabi. The Config loads the given pyproject.toml
according to PEP-518.

Warning: When trying to use GitHub based laws without an initialized GitHub client (or invalid token), a
warning will be thrown at the beginning of the execution. In case a PR open is attempted, a RuntimeError
will be raised

68 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

load()
Handle configuration loading from project toml file and make sure the configuration are initialized and
merged. Also, make sure that logging is set properly. Before loading the configuration, it is a requirement
to set the HAMMURABI_SETTINGS_PATH as it will contain the path to the toml file what Hammurabi
expects. This is needed for cases when the 3rd party rules would like to read the configuration of Ham-
murabi.

. . . note:

The HAMMURABI_SETTINGS_PATH environment variable is set by the CLI by default, so there
is no need to set if no 3rd party rules are used or those rules are not loading config.

Raises Runtime error if HAMMURABI_SETTINGS_PATH environment variable is not set or an
invalid git repository was given.

class hammurabi.config.Settings
Bases: hammurabi.config.CommonSettings

CLI related settings which are directly needed for the execution.

pillar: object = None

class hammurabi.config.TOMLSettings
Bases: hammurabi.config.CommonSettings

TOML Project configuration settings. Most of the fields are used to compose other configuration fields like
github_token or pillar.

github_token: str = None

log_level: str = None

pillar_config: Path = None

pillar_name: str = None

7.1.4 hammurabi.exceptions module

exception hammurabi.exceptions.AbortLawError
Bases: Exception

Custom exception to make sure that own exception types are caught by the Law’s execution.

exception hammurabi.exceptions.PreconditionFailedError
Bases: Exception

Custom exception representing a failed precondition. In case a precondition failed, there is no need to raise an
error and report the rule as a failure. The precondition is for checking that a rule should or shouldn’t run; not for
breaking the execution.

7.1. hammurabi package 69

Hammurabi Documentation, Release 0.5.0

7.1.5 hammurabi.helpers module

hammurabi.helpers.full_strip(value: str)→ str
Strip every line.

7.1.6 hammurabi.law module

This module contains the definition of Law which is responsible for the execution of its registered Rules. Every Law
can have multiple rules to execute.

In case a rule raises an exception the execution may abort and none of the remaining rules will be executed neither
pipes or children. An abort can cause an inconsistent state or a dirty git branch. If rule_can_abort config is set to
True, the whole execution of the :class:hammurabi.pillar.Pillar will be aborted and the original exception
will be re-raised.

class hammurabi.law.Law(name: str, description: str, rules: Iterable[hammurabi.rules.base.Rule])
Bases: hammurabi.mixins.GitMixin

A Law is a collection of Rules which is responsible for the rule execution and git committing.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create pyproject.toml",
>>> path=Path("./pyproject.toml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

commit()
Commit the changes made by registered rules and add a meaningful commit message.

Example commit message:

Migrate to next generation project template

* Create pyproject.toml

* Add meta info from setup.py to pyproject.toml

* Add existing dependencies

* Remove requirements.txt

* Remove setup.py

property documentation
Get the name and description of the Law object.

Returns Return the name and description of the law as its documentation

Return type str

70 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

enforce()
Execute all registered rule. If rule_can_abort config option is set to True, all the rules will be
aborted and an exception will be raised.

When the whole execution chain is finished, the changes will be committed except the failed ones.

Note: Failed rules and their chain (excluding prerequisites) will be added to the pull request description.

Raises AbortLawError

property failed_rules
Return the rules which did modifications and failed.

Returns Return the failed rules

Return type Union[Tuple[()], Tuple[Rule]]

get_execution_order() → List[Union[hammurabi.rules.base.Rule, ham-
murabi.preconditions.base.Precondition]]

Get the execution order of the registered rules. The order will contain the pipes and children as well.

This helper function is useful in debugging and information gathering.

Returns Return the execution order of the rules

Return type List[Rule]

property passed_rules
Return the rules which did modifications and not failed.

Returns Return the passed rules

Return type Tuple[Rule, ..]

property skipped_rules
Return the rules which neither modified the code nor failed.

Returns Return the skipped rules

Return type Tuple[Rule, ..]

7.1.7 hammurabi.main module

7.1.8 hammurabi.mixins module

Mixins module contains helpers for both laws and rules. Usually this file will contain Git commands related helpers.
Also, this module contains the extensions for several online git based VCS.

class hammurabi.mixins.GitHubMixin
Bases: hammurabi.mixins.GitMixin, hammurabi.mixins.PullRequestHelperMixin

Extending hammurabi.mixins.GitMixin to be able to open pull requests on GitHub after changes are
pushed to remote.

create_pull_request()→ Optional[str]
Create a PR on GitHub after the changes are pushed to remote. The pull request details (repository, branch)
are set by the project configuration. The mapping of the details and configs:

7.1. hammurabi package 71

Hammurabi Documentation, Release 0.5.0

Detail Configuration
repo repository (owner/repository format)
base git_base_name
branch git_branch_name

Returns Return the open (and updated) or opened PR’s url

Return type Optional[str]

class hammurabi.mixins.GitMixin
Bases: object

Simple mixin which contains all the common git commands which are needed to push a change to an online VCS
like GitHub or GitLab. This mixin could be used by hammurabi.law.Law`s, :class:`hammurabi.
rules.base or any rules which can make modifications during its execution.

static checkout_branch()→ None
Perform a simple git checkout, to not pollute the default branch and use that branch for the pull request
later. The branch name can be changed in the config by setting the git_branch_name config option.

The following command is executed:

git checkout -b <branch name>

git_add(param: pathlib.Path)→ None
Add file contents to the index.

Parameters param (Path) – Path to add to the index

The following command is executed:

git add <path>

git_commit(message: str)→ None
Commit the changes on the checked out branch.

Parameters message (str) – Git commit message

The following command is executed:

git commit -m "<commit message>"

git_remove(param: pathlib.Path)→ None
Remove files from the working tree and from the index.

Parameters param (Path) – Path to remove from the working tree and the index

The following command is executed:

git rm <path>

static push_changes()→ None
Push the changes with the given branch set by git_branch_name config option to the remote origin.

The following command is executed:

git push origin <branch name>

72 Chapter 7. hammurabi

Hammurabi Documentation, Release 0.5.0

class hammurabi.mixins.PullRequestHelperMixin
Bases: object

Give helper classes for pull request related operations

generate_pull_request_body(pillar)→ str
Generate the body of the pull request based on the registered laws and rules. The pull request body is
markdown formatted.

Parameters pillar (hammurabi.pillar.Pillar) – Pillar configuration

Returns Returns the generated pull request description

Return type str

7.1.9 hammurabi.pillar module

Pillar module is responsible for handling the whole execution chain including executing the registered laws, pushing
the changes to the VCS and creating a pull request. All the laws registered to the pillar will be executed in the order
of the registration.

class hammurabi.pillar.Pillar(reporter_class: Type[hammurabi.reporters.base.Reporter] =
<class 'hammurabi.reporters.json.JSONReporter'>)

Bases: hammurabi.mixins.GitHubMixin

Pillar is responsible for the execution of the chain of laws and rules.

All the registered laws and rules can be retrieved using the laws and rules properties, or if necessary single
laws and rules can be accessed using the resource’s name as a parameter for get_law or get_rule methods.

As a final step, pillar will prepare its reporter for report generation. For more information about
reporters, check hammurabi.reporters.base.Reporter and hammurabi.reporters.json.
JSONReporter.

Parameters reporter_class (Type[Reporter]) – The reporter class used for generating
the reports

enforce()
Run all the registered laws and rules one by one. This method is responsible for executing the registered
laws, push changes to the git origin and open the pull request.

This method glues together the lower level components and makes sure that the execution of laws and rules
can not be called more than once at the same time for a target.

get_law(name: str)→ hammurabi.law.Law
Get a law by its name. In case of no Laws are registered or the law can not be found by its name, a
StopIteration exception will be raised.

Parameters name (str) – Name of the law which will be used for the lookup

Raises StopIteration exception if Law not found

Returns Return the searched law

Return type hammurabi.law.Law

get_rule(name: str)→ hammurabi.rules.base.Rule
Get a registered rule (and its pipe/children) by the rule’s name.

This helper function is useful in debugging and information gathering.

Parameters name (str) – Name of the rule which will be used for the lookup

Raises StopIteration exception if Rule not found

7.1. hammurabi package 73

Hammurabi Documentation, Release 0.5.0

Returns Return the rule in case of a match for the name

Return type Rule

property laws
Return the registered laws in order of the registration.

register(law: hammurabi.law.Law)
Register the given Law to the Pillar. The order of the registration does not matter. The laws should never
depend on each other.

Parameters law (hammurabi.law.Law) – Initialized Law which should be registered

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create pyproject.toml",
>>> path=Path("./pyproject.toml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning: The laws should never depend on each other, because the execution may not happen in the
same order the laws were registered. Instead, organize the depending rules in one law to resolve any
dependency conflicts.

property rules
Return all the registered laws’ rules.

7.1.10 Module contents

74 Chapter 7. hammurabi

CHAPTER

EIGHT

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

8.1 Types of Contributions

8.1.1 Report Bugs

Report bugs at https://github.com/gabor-boros/hammurabi/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

8.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

8.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it. In case you added a new Rule or Precondition, do not forget to add them to the docs
as well.

8.1.4 Write Documentation

Hammurabi could always use more documentation, whether as part of the official Hammurabi docs, in docstrings, or
even on the web in blog posts, articles, and such.

75

https://github.com/gabor-boros/hammurabi/issues

Hammurabi Documentation, Release 0.5.0

8.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/gabor-boros/hammurabi/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

8.2 Get Started!

Ready to contribute? Here’s how to set up hammurabi for local development.

1. Fork the hammurabi repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/hammurabi.git

3. Install your local copy. Assuming you have poetry installed, this is how you set up your fork for local develop-
ment:

$ cd hammurabi/
$ poetry install

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass linters and the tests:

$ poetry shell
$ make lint
$ make test

You will need make not just for executing the command, but to build (and test) the documentations page as well.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

76 Chapter 8. Contributing

https://github.com/gabor-boros/hammurabi/issues

Hammurabi Documentation, Release 0.5.0

8.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.7 and 3.8.

8.4 Releasing

A reminder for the maintainers on how to release. Make sure all your changes are committed (including an entry in
CHANGELOG.rst).

After all, create a tag and a release on GitHub. The rest will be handled by Travis.

Please follow this checklist for the release:

1. Make sure that formatters are not complaining (make format returns 0)

2. Make sure that linters are not complaining (make lint returns 0)

3. Update CHANGELOG.rst - do not forget to update the unreleased link comparison

4. Update version in pyproject.toml, CHANGELOG.rst, docs/conf.py and hammurabi/
__init__.py

5. Create a new Release on GitHub with a detailed release description based on the previous releases.

8.3. Pull Request Guidelines 77

Hammurabi Documentation, Release 0.5.0

78 Chapter 8. Contributing

CHAPTER

NINE

VULNERABILITIES

Note: Important! In case you found vulnerability or security issue in one of the libraries we use or somewhere else
in the code, please contact us via e-mail at gabor.brs@gmail.com. Please do not use this channel for support.

9.1 Reporting vulnerabilities

9.1.1 What is vulnerability?

Vulnerability is a cyber-security term that refers to a flaw in a system that can leave it open to attack. The vulnerability
may also refer to any type of weakness in a computer system itself, in a set of procedures, or in anything that leaves
information security exposed to a threat. - by techopedia

9.1.2 In case you found a vulnerability

In case you found vulnerability or security issue in one of the libraries we use or somewhere else in the code, please
do not publish it, instead, contact us via e-mail at gabor.brs@gmail.com. We will take the necessary steps to fix the
issue. We are handling the vulnerabilities privately.

To make report processing easier, please consider the following:

• Use clear and expressive subject

• Have a short, clear, and direct description including the details

• Include OWASP link, CVE references or links to other public advisories and standards

• Add steps on how to reproduce the issue

• Describe your environment

• Attach screenshots if applicable

Note: This article is a pretty good resource on how to report vulnerabilities.

In case you have any further questions regarding vulnerability reporting, feel free to open an issue on GitHub.

79

mailto:gabor.brs@gmail.com
https://rethinkdb.com/docs/vulnerabilities/techopedia.com/definition/13484/vulnerability
mailto:gabor.brs@gmail.com
https://github.com/gabor-boros/hammurabi/issues

Hammurabi Documentation, Release 0.5.0

80 Chapter 9. Vulnerabilities

CHAPTER

TEN

CREDITS

10.1 Development Lead

• Gábor Boros (@gabor-boros)

10.2 Contributors

Special thanks to Péter Turi (@turip) for the initial idea.

Check the whole list of contributors here.

81

https://github.com/gabor-boros
https://github.com/turip
https://github.com/gabor-boros/hammurabi/graphs/contributors

Hammurabi Documentation, Release 0.5.0

82 Chapter 10. Credits

CHAPTER

ELEVEN

CHANGELOG

All notable changes to this project will be documented in this file. The format is based on Keep a Changelog, and this
project adheres to Semantic Versioning.

11.1 Unreleased

11.2 0.5.0 - 2020-03-31

11.2.1 Fixed

• Add untracked files as well to the index

11.2.2 Removed

• Remove lock file creation since it is useless

11.3 0.4.0 - 2020-03-31

11.3.1 Added

• Added Reporter and JSONReporter classes to be able to expose execution results

• Add new config option report_name to the available settings

• New exception type PreconditionFailedError indicating that the precondition failed and no need to
raise an error

11.3.2 Changed

• Make sure children and pipe can be set at the same time

• Simplify yaml key rename logic

• SectionRenamed not raises error if old section name is not represented but the new one

• OptionRenamed not raises error if old option name is not represented but the new one

• LineReplaced not raises error if old line is not represented but the new one

83

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

Hammurabi Documentation, Release 0.5.0

• Remove redundant way of getting rules of a law (https://github.com/gabor-boros/hammurabi/issues/45)

• GitHub mixin now returns the URL of the open PR’s URL; if an existing PR found, that PR’s URL will be
returned

• Pillar prepare its Reporter for report generation

• Pillar has a new argument to set the pillar’s reporter easily

• CLI’s enforce command now calls the Pillar’s prepared Reporter to do the report

• “No changes made by” messages now info logs instead of warnings

• Commit changes only if the Law has passing rules

• If PreconditionFailedError raised, do not log error messages, log a warning instead

• LineExists will not raise an exception if multiple targets found, instead it will select the last match as target

• Have better PR description formatting

11.3.3 Fixed

• Fixed a dictionary traversal issue regarding yaml file support

• Fixed “Failed Rules” formatting of PR description by removing \xa0 character

• Fixed no Rule name in PR description if the Law did not change anything issue

• Fixed nested rule indentation PR description markup

• Fixed an issue with LineReplaced, if the input file is empty, raise an exception

11.4 0.3.1 - 2020-03-26

11.4.1 Fixed

• Make sure the lost ini file fix is back lost by merge conflict resolution

11.5 0.3.0 - 2020-03-25

11.5.1 Added

• Add Yaml file support (https://github.com/gabor-boros/hammurabi/pull/24)

11.5.2 Changed

• Make sure SectionExists adds the section even if no target given (https://github.com/gabor-boros/
hammurabi/pull/21)

• Apply PEP-561 (https://github.com/gabor-boros/hammurabi/pull/19)

84 Chapter 11. CHANGELOG

https://github.com/gabor-boros/hammurabi/issues/45
https://github.com/gabor-boros/hammurabi/pull/24
https://github.com/gabor-boros/hammurabi/pull/21
https://github.com/gabor-boros/hammurabi/pull/21
https://github.com/gabor-boros/hammurabi/pull/19

Hammurabi Documentation, Release 0.5.0

11.5.3 Fixed

• Fixed an ini section rename issue (https://github.com/gabor-boros/hammurabi/pull/24)

11.5.4 Removed

• Updated CONTRIBUTING.rst to remove the outdated stub generation

11.6 0.2.0 - 2020-03-23

11.6.1 Added

• Render files from Jinja2 templates (TemplateRendered rule)

• Add new Precondition base class (https://github.com/gabor-boros/hammurabi/pull/9)

• Add Code of Conduct to meet community requirements (https://github.com/gabor-boros/hammurabi/pull/10)

• New section in the documentations for Rules and Preconditions (https://github.com/gabor-boros/
hammurabi/pull/11)

• Collect failed rules for every law (Law.failed_rules) (https://github.com/gabor-boros/hammurabi/pull/
13)

• Add chained rules to PR body (https://github.com/gabor-boros/hammurabi/pull/13)

• Add failed rules to PR body (https://github.com/gabor-boros/hammurabi/pull/13)

• Throw a warning when no GitHub client is initialized (https://github.com/gabor-boros/hammurabi/pull/13)

• Raise runtime error when no GitHub client is initialized, but PR creation called (https://github.com/gabor-boros/
hammurabi/pull/13)

• Guess owner/repository based on the origin url of the working directory (https://github.com/gabor-boros/
hammurabi/pull/13)

11.6.2 Changed

• Add stub formatting to Makefile’s stubs command

• Extract common methods of Precondition and Rule to a new AbstractRule class (https://github.com/
gabor-boros/hammurabi/pull/9)

• Extended CONTRIBUTING guidelines to include a notice for adding Rules and Preconditions (https:
//github.com/gabor-boros/hammurabi/pull/11)

• Refactor package structure and extract preconditions to separate submodule (https://github.com/gabor-boros/
hammurabi/pull/11)

• Pull request body generation moved to the common GitMixin class (https://github.com/gabor-boros/
hammurabi/pull/13)

• Pillar will always create lock file in the working directory (https://github.com/gabor-boros/hammurabi/pull/13)

• Call expandvar and expanduser of configuration files (https://github.com/gabor-boros/hammurabi/pull/13)

• Hammurabi only works in the current working directory (https://github.com/gabor-boros/hammurabi/pull/13)

11.6. 0.2.0 - 2020-03-23 85

https://github.com/gabor-boros/hammurabi/pull/24
https://github.com/gabor-boros/hammurabi/pull/9
https://github.com/gabor-boros/hammurabi/pull/10
https://github.com/gabor-boros/hammurabi/pull/11
https://github.com/gabor-boros/hammurabi/pull/11
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/9
https://github.com/gabor-boros/hammurabi/pull/9
https://github.com/gabor-boros/hammurabi/pull/11
https://github.com/gabor-boros/hammurabi/pull/11
https://github.com/gabor-boros/hammurabi/pull/11
https://github.com/gabor-boros/hammurabi/pull/11
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13

Hammurabi Documentation, Release 0.5.0

• Read settings (pyproject.toml) path from HAMMURABI_SETTINGS_PATH environment variable (https://
github.com/gabor-boros/hammurabi/pull/13)

• Fix version handling in docs

11.6.3 Fixed

• Remove faulty author of git committing (https://github.com/gabor-boros/hammurabi/pull/13)

• Only attempt to create a PR if there is no PR from Hammurabi (https://github.com/gabor-boros/hammurabi/pull/
13)

• Fix double committing issue (https://github.com/gabor-boros/hammurabi/pull/13)

• Fix committing of laws when nothing changed (https://github.com/gabor-boros/hammurabi/pull/13)

• Fixed several CLI arguments related issues (https://github.com/gabor-boros/hammurabi/pull/13)

• Fixed a typo in the Bug issue template of GitHub (https://github.com/gabor-boros/hammurabi/pull/13)

11.6.4 Removed

• Removed target directory setting from config and CLI (https://github.com/gabor-boros/hammurabi/pull/13)

11.7 0.1.2 - 2020-03-18

11.7.1 Changed

• Extended Makefile to generate stubs

• Extend documentation how to generate and update stubs

• Update how to release section of CONTRIBUTING.rst

11.8 0.1.1 - 2020-03-17

11.8.1 Changed

• Moved unreleased section of CHANGELOG to the top

• Updated changelog entries to contain links for release versions

• Updated CONTRIBUTING document to mention changelog links

• Refactored configuration handling (https://github.com/gabor-boros/hammurabi/pull/5)

86 Chapter 11. CHANGELOG

https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/13
https://github.com/gabor-boros/hammurabi/pull/5

Hammurabi Documentation, Release 0.5.0

11.8.2 Fixed

• Fixed wrong custom rule example in the README

• Smaller issues around git committing and pushing (https://github.com/gabor-boros/hammurabi/pull/5)

11.9 0.1.0 - 2020-03-12

11.9.1 Added

• Basic file manipulations

– Create file

– Create files

– Remove file

– Remove files

– Empty file

• Basic directory manipulations

– Create directory

– Remove directory

– Empty directory

• Basic file and directory operations

– Change owner

– Change mode

– Move file or directory

– Copy file or directory

– Rename file or directory

• Plain text/general file manipulations

– Add line

– Remove line

– Replace line

• INI file specific manipulations

– Add section

– Remove section

– Rename section

– Add option

– Remove option

– Rename option

• Miscellaneous

11.9. 0.1.0 - 2020-03-12 87

https://github.com/gabor-boros/hammurabi/pull/5

Hammurabi Documentation, Release 0.5.0

– Initial documentation

– CI/CD integration

88 Chapter 11. CHANGELOG

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

89

Hammurabi Documentation, Release 0.5.0

90 Chapter 12. Indices and tables

PYTHON MODULE INDEX

h
hammurabi, 74
hammurabi.config, 68
hammurabi.exceptions, 69
hammurabi.helpers, 70
hammurabi.law, 70
hammurabi.main, 71
hammurabi.mixins, 71
hammurabi.pillar, 73
hammurabi.preconditions, 36
hammurabi.preconditions.base, 35
hammurabi.reporters, 38
hammurabi.reporters.base, 36
hammurabi.reporters.json, 38
hammurabi.rules, 68
hammurabi.rules.abstract, 38
hammurabi.rules.attributes, 40
hammurabi.rules.base, 43
hammurabi.rules.common, 45
hammurabi.rules.directories, 46
hammurabi.rules.files, 48
hammurabi.rules.ini, 52
hammurabi.rules.mixins, 57
hammurabi.rules.operations, 57
hammurabi.rules.templates, 59
hammurabi.rules.text, 60
hammurabi.rules.yaml, 63

91

Hammurabi Documentation, Release 0.5.0

92 Python Module Index

INDEX

A
AbortLawError, 69
AbstractRule (class in hammurabi.rules.abstract),

38
additional_data (ham-

murabi.reporters.base.Report attribute),
37

AdditionalData (class in ham-
murabi.reporters.base), 36

C
can_proceed() (hammurabi.rules.base.Rule prop-

erty), 44
checkout_branch() (hammurabi.mixins.GitMixin

static method), 72
commit() (hammurabi.law.Law method), 70
CommonSettings (class in hammurabi.config), 68
CommonSettings.Config (class in ham-

murabi.config), 68
Config (class in hammurabi.config), 68
Copied (class in hammurabi.rules.operations), 57
create_pull_request() (ham-

murabi.mixins.GitHubMixin method), 71

D
description (hammurabi.reporters.base.LawItem at-

tribute), 37
description() (ham-

murabi.rules.abstract.AbstractRule property),
39

DirectoryEmptied (class in ham-
murabi.rules.directories), 46

DirectoryExists (class in ham-
murabi.rules.directories), 47

DirectoryNotExists (class in ham-
murabi.rules.directories), 47

documentation() (hammurabi.law.Law property),
70

documentation() (ham-
murabi.rules.abstract.AbstractRule property),
39

dry_run (hammurabi.config.CommonSettings at-
tribute), 68

E
enforce() (hammurabi.law.Law method), 70
enforce() (hammurabi.pillar.Pillar method), 73
env_prefix (hammurabi.config.CommonSettings.Config

attribute), 68
execute() (hammurabi.preconditions.base.Precondition

method), 36
execute() (hammurabi.rules.base.Rule method), 44

F
failed (hammurabi.reporters.base.Report attribute),

37
failed_rules() (hammurabi.law.Law property), 71
FileEmptied (class in hammurabi.rules.files), 48
FileExists (class in hammurabi.rules.files), 49
FileNotExists (class in hammurabi.rules.files), 49
FilesExist (class in hammurabi.rules.files), 50
FilesNotExist (class in hammurabi.rules.files), 51
finished (hammurabi.reporters.base.AdditionalData

attribute), 36
full_strip() (in module hammurabi.helpers), 70

G
generate_pull_request_body() (ham-

murabi.mixins.PullRequestHelperMixin
method), 73

get_execution_order() (hammurabi.law.Law
method), 71

get_execution_order() (ham-
murabi.rules.base.Rule method), 44

get_law() (hammurabi.pillar.Pillar method), 73
get_rule() (hammurabi.pillar.Pillar method), 73
get_rule_chain() (hammurabi.rules.base.Rule

method), 44
git_add() (hammurabi.mixins.GitMixin method), 72
git_base_name (hammurabi.config.CommonSettings

attribute), 68
git_branch_name (ham-

murabi.config.CommonSettings attribute),

93

Hammurabi Documentation, Release 0.5.0

68
git_commit() (hammurabi.mixins.GitMixin method),

72
git_remove() (hammurabi.mixins.GitMixin method),

72
github_token (hammurabi.config.TOMLSettings at-

tribute), 69
GitHubMixin (class in hammurabi.mixins), 71
GitMixin (class in hammurabi.mixins), 72

H
hammurabi (module), 74
hammurabi.config (module), 68
hammurabi.exceptions (module), 69
hammurabi.helpers (module), 70
hammurabi.law (module), 70
hammurabi.main (module), 71
hammurabi.mixins (module), 71
hammurabi.pillar (module), 73
hammurabi.preconditions (module), 36
hammurabi.preconditions.base (module), 35
hammurabi.reporters (module), 38
hammurabi.reporters.base (module), 36
hammurabi.reporters.json (module), 38
hammurabi.rules (module), 68
hammurabi.rules.abstract (module), 38
hammurabi.rules.attributes (module), 40
hammurabi.rules.base (module), 43
hammurabi.rules.common (module), 45
hammurabi.rules.directories (module), 46
hammurabi.rules.files (module), 48
hammurabi.rules.ini (module), 52
hammurabi.rules.mixins (module), 57
hammurabi.rules.operations (module), 57
hammurabi.rules.templates (module), 59
hammurabi.rules.text (module), 60
hammurabi.rules.yaml (module), 63

J
JSONReporter (class in hammurabi.reporters.json),

38

L
Law (class in hammurabi.law), 70
law (hammurabi.reporters.base.RuleItem attribute), 37
LawItem (class in hammurabi.reporters.base), 36
laws() (hammurabi.pillar.Pillar property), 74
LineExists (class in hammurabi.rules.text), 60
LineNotExists (class in hammurabi.rules.text), 61
LineReplaced (class in hammurabi.rules.text), 62
load() (hammurabi.config.Config method), 68
log_level (hammurabi.config.TOMLSettings at-

tribute), 69

M
made_changes (ham-

murabi.preconditions.base.Precondition
attribute), 36

made_changes (ham-
murabi.rules.abstract.AbstractRule attribute),
39

made_changes (ham-
murabi.rules.attributes.ModeChanged at-
tribute), 41

made_changes (ham-
murabi.rules.attributes.OwnerChanged at-
tribute), 42

made_changes (ham-
murabi.rules.attributes.SingleAttributeRule
attribute), 42

made_changes (hammurabi.rules.base.Rule attribute),
45

made_changes (ham-
murabi.rules.common.MultiplePathRule
attribute), 45

made_changes (ham-
murabi.rules.common.SinglePathRule at-
tribute), 45

made_changes (ham-
murabi.rules.directories.DirectoryEmptied
attribute), 46

made_changes (ham-
murabi.rules.directories.DirectoryExists
attribute), 47

made_changes (ham-
murabi.rules.directories.DirectoryNotExists
attribute), 48

made_changes (hammurabi.rules.files.FileEmptied at-
tribute), 49

made_changes (hammurabi.rules.files.FileExists at-
tribute), 49

made_changes (hammurabi.rules.files.FileNotExists
attribute), 50

made_changes (hammurabi.rules.files.FilesExist at-
tribute), 51

made_changes (hammurabi.rules.files.FilesNotExist
attribute), 51

made_changes (hammurabi.rules.ini.OptionRenamed
attribute), 52

made_changes (hammurabi.rules.ini.OptionsExist at-
tribute), 53

made_changes (hammurabi.rules.ini.OptionsNotExist
attribute), 54

made_changes (hammurabi.rules.ini.SectionExists at-
tribute), 55

made_changes (hammurabi.rules.ini.SectionNotExists
attribute), 56

made_changes (hammurabi.rules.ini.SectionRenamed

94 Index

Hammurabi Documentation, Release 0.5.0

attribute), 56
made_changes (ham-

murabi.rules.ini.SingleConfigFileRule at-
tribute), 57

made_changes (hammurabi.rules.operations.Copied
attribute), 58

made_changes (hammurabi.rules.operations.Moved
attribute), 58

made_changes (ham-
murabi.rules.operations.Renamed attribute),
59

made_changes (ham-
murabi.rules.templates.TemplateRendered
attribute), 60

made_changes (hammurabi.rules.text.LineExists at-
tribute), 61

made_changes (hammurabi.rules.text.LineNotExists
attribute), 61

made_changes (hammurabi.rules.text.LineReplaced
attribute), 62

made_changes (ham-
murabi.rules.yaml.SingleDocumentYAMLFileRule
attribute), 63

made_changes (ham-
murabi.rules.yaml.YAMLKeyExists attribute),
64

made_changes (ham-
murabi.rules.yaml.YAMLKeyNotExists at-
tribute), 64

made_changes (ham-
murabi.rules.yaml.YAMLKeyRenamed at-
tribute), 65

made_changes (ham-
murabi.rules.yaml.YAMLValueExists attribute),
66

made_changes (ham-
murabi.rules.yaml.YAMLValueNotExists
attribute), 67

ModeChanged (class in hammurabi.rules.attributes), 40
Moved (class in hammurabi.rules.operations), 58
MultiplePathRule (class in ham-

murabi.rules.common), 45

N
name (hammurabi.preconditions.base.Precondition at-

tribute), 36
name (hammurabi.reporters.base.LawItem attribute), 37
name (hammurabi.reporters.base.RuleItem attribute), 37
name (hammurabi.rules.abstract.AbstractRule attribute),

39
name (hammurabi.rules.attributes.ModeChanged at-

tribute), 41
name (hammurabi.rules.attributes.OwnerChanged at-

tribute), 42

name (hammurabi.rules.attributes.SingleAttributeRule
attribute), 42

name (hammurabi.rules.base.Rule attribute), 45
name (hammurabi.rules.common.MultiplePathRule at-

tribute), 45
name (hammurabi.rules.common.SinglePathRule at-

tribute), 46
name (hammurabi.rules.directories.DirectoryEmptied

attribute), 47
name (hammurabi.rules.directories.DirectoryExists at-

tribute), 47
name (hammurabi.rules.directories.DirectoryNotExists

attribute), 48
name (hammurabi.rules.files.FileEmptied attribute), 49
name (hammurabi.rules.files.FileExists attribute), 49
name (hammurabi.rules.files.FileNotExists attribute), 50
name (hammurabi.rules.files.FilesExist attribute), 51
name (hammurabi.rules.files.FilesNotExist attribute), 51
name (hammurabi.rules.ini.OptionRenamed attribute),

52
name (hammurabi.rules.ini.OptionsExist attribute), 53
name (hammurabi.rules.ini.OptionsNotExist attribute),

54
name (hammurabi.rules.ini.SectionExists attribute), 55
name (hammurabi.rules.ini.SectionNotExists attribute),

56
name (hammurabi.rules.ini.SectionRenamed attribute),

56
name (hammurabi.rules.ini.SingleConfigFileRule at-

tribute), 57
name (hammurabi.rules.operations.Copied attribute), 58
name (hammurabi.rules.operations.Moved attribute), 58
name (hammurabi.rules.operations.Renamed attribute),

59
name (hammurabi.rules.templates.TemplateRendered at-

tribute), 60
name (hammurabi.rules.text.LineExists attribute), 61
name (hammurabi.rules.text.LineNotExists attribute), 62
name (hammurabi.rules.text.LineReplaced attribute), 62
name (hammurabi.rules.yaml.SingleDocumentYAMLFileRule

attribute), 63
name (hammurabi.rules.yaml.YAMLKeyExists attribute),

64
name (hammurabi.rules.yaml.YAMLKeyNotExists

attribute), 64
name (hammurabi.rules.yaml.YAMLKeyRenamed at-

tribute), 65
name (hammurabi.rules.yaml.YAMLValueExists at-

tribute), 66
name (hammurabi.rules.yaml.YAMLValueNotExists at-

tribute), 67

O
OptionRenamed (class in hammurabi.rules.ini), 52

Index 95

Hammurabi Documentation, Release 0.5.0

OptionsExist (class in hammurabi.rules.ini), 52
OptionsNotExist (class in hammurabi.rules.ini), 53
OwnerChanged (class in hammurabi.rules.attributes),

41

P
param (hammurabi.preconditions.base.Precondition at-

tribute), 36
param (hammurabi.rules.abstract.AbstractRule at-

tribute), 39
param (hammurabi.rules.attributes.ModeChanged at-

tribute), 41
param (hammurabi.rules.attributes.OwnerChanged at-

tribute), 42
param (hammurabi.rules.attributes.SingleAttributeRule

attribute), 42
param (hammurabi.rules.base.Rule attribute), 45
param (hammurabi.rules.common.MultiplePathRule at-

tribute), 45
param (hammurabi.rules.common.SinglePathRule at-

tribute), 46
param (hammurabi.rules.directories.DirectoryEmptied

attribute), 47
param (hammurabi.rules.directories.DirectoryExists at-

tribute), 47
param (hammurabi.rules.directories.DirectoryNotExists

attribute), 48
param (hammurabi.rules.files.FileEmptied attribute), 49
param (hammurabi.rules.files.FileExists attribute), 49
param (hammurabi.rules.files.FileNotExists attribute),

50
param (hammurabi.rules.files.FilesExist attribute), 51
param (hammurabi.rules.files.FilesNotExist attribute),

51
param (hammurabi.rules.ini.OptionRenamed attribute),

52
param (hammurabi.rules.ini.OptionsExist attribute), 53
param (hammurabi.rules.ini.OptionsNotExist attribute),

54
param (hammurabi.rules.ini.SectionExists attribute), 55
param (hammurabi.rules.ini.SectionNotExists attribute),

56
param (hammurabi.rules.ini.SectionRenamed attribute),

56
param (hammurabi.rules.ini.SingleConfigFileRule at-

tribute), 57
param (hammurabi.rules.operations.Copied attribute),

58
param (hammurabi.rules.operations.Moved attribute),

58
param (hammurabi.rules.operations.Renamed at-

tribute), 59
param (hammurabi.rules.templates.TemplateRendered

attribute), 60

param (hammurabi.rules.text.LineExists attribute), 61
param (hammurabi.rules.text.LineNotExists attribute),

62
param (hammurabi.rules.text.LineReplaced attribute),

62
param (hammurabi.rules.yaml.SingleDocumentYAMLFileRule

attribute), 63
param (hammurabi.rules.yaml.YAMLKeyExists at-

tribute), 64
param (hammurabi.rules.yaml.YAMLKeyNotExists at-

tribute), 64
param (hammurabi.rules.yaml.YAMLKeyRenamed at-

tribute), 65
param (hammurabi.rules.yaml.YAMLValueExists at-

tribute), 66
param (hammurabi.rules.yaml.YAMLValueNotExists at-

tribute), 68
passed (hammurabi.reporters.base.Report attribute),

37
passed_rules() (hammurabi.law.Law property), 71
Pillar (class in hammurabi.pillar), 73
pillar (hammurabi.config.Settings attribute), 69
pillar_config (hammurabi.config.TOMLSettings at-

tribute), 69
pillar_name (hammurabi.config.TOMLSettings at-

tribute), 69
post_task_hook() (ham-

murabi.rules.abstract.AbstractRule method),
39

post_task_hook() (ham-
murabi.rules.attributes.SingleAttributeRule
method), 42

post_task_hook() (ham-
murabi.rules.common.MultiplePathRule
method), 45

post_task_hook() (ham-
murabi.rules.common.SinglePathRule method),
46

post_task_hook() (ham-
murabi.rules.directories.DirectoryNotExists
method), 48

post_task_hook() (ham-
murabi.rules.files.FileNotExists method),
50

post_task_hook() (ham-
murabi.rules.files.FilesNotExist method),
51

post_task_hook() (ham-
murabi.rules.operations.Copied method),
58

post_task_hook() (ham-
murabi.rules.operations.Moved method),
58

post_task_hook() (ham-

96 Index

Hammurabi Documentation, Release 0.5.0

murabi.rules.templates.TemplateRendered
method), 60

pre_task_hook() (ham-
murabi.rules.abstract.AbstractRule method),
39

pre_task_hook() (ham-
murabi.rules.ini.SingleConfigFileRule
method), 57

pre_task_hook() (ham-
murabi.rules.yaml.SingleDocumentYAMLFileRule
method), 63

Precondition (class in ham-
murabi.preconditions.base), 35

PreconditionFailedError, 69
pull_request_url (ham-

murabi.reporters.base.AdditionalData at-
tribute), 36

PullRequestHelperMixin (class in ham-
murabi.mixins), 72

push_changes() (hammurabi.mixins.GitMixin static
method), 72

R
register() (hammurabi.pillar.Pillar method), 74
Renamed (class in hammurabi.rules.operations), 59
Report (class in hammurabi.reporters.base), 37
report() (hammurabi.reporters.base.Reporter

method), 37
report() (hammurabi.reporters.json.JSONReporter

method), 38
report_name (hammurabi.config.CommonSettings at-

tribute), 68
Reporter (class in hammurabi.reporters.base), 37
repository (hammurabi.config.CommonSettings at-

tribute), 68
Rule (class in hammurabi.rules.base), 43
rule_can_abort (ham-

murabi.config.CommonSettings attribute),
68

RuleItem (class in hammurabi.reporters.base), 37
rules() (hammurabi.pillar.Pillar property), 74

S
SectionExists (class in hammurabi.rules.ini), 54
SectionNotExists (class in hammurabi.rules.ini),

55
SectionRenamed (class in hammurabi.rules.ini), 56
SelectorMixin (class in hammurabi.rules.mixins), 57
Settings (class in hammurabi.config), 69
SingleAttributeRule (class in ham-

murabi.rules.attributes), 42
SingleConfigFileRule (class in ham-

murabi.rules.ini), 56

SingleDocumentYAMLFileRule (class in ham-
murabi.rules.yaml), 63

SinglePathRule (class in ham-
murabi.rules.common), 45

skipped (hammurabi.reporters.base.Report attribute),
37

skipped_rules() (hammurabi.law.Law property),
71

started (hammurabi.reporters.base.AdditionalData
attribute), 36

T
task() (hammurabi.preconditions.base.Precondition

method), 36
task() (hammurabi.rules.abstract.AbstractRule

method), 39
task() (hammurabi.rules.attributes.ModeChanged

method), 41
task() (hammurabi.rules.attributes.OwnerChanged

method), 42
task() (hammurabi.rules.attributes.SingleAttributeRule

method), 43
task() (hammurabi.rules.base.Rule method), 45
task() (hammurabi.rules.common.MultiplePathRule

method), 45
task() (hammurabi.rules.common.SinglePathRule

method), 46
task() (hammurabi.rules.directories.DirectoryEmptied

method), 47
task() (hammurabi.rules.directories.DirectoryExists

method), 47
task() (hammurabi.rules.directories.DirectoryNotExists

method), 48
task() (hammurabi.rules.files.FileEmptied method), 49
task() (hammurabi.rules.files.FileExists method), 49
task() (hammurabi.rules.files.FileNotExists method),

50
task() (hammurabi.rules.files.FilesExist method), 51
task() (hammurabi.rules.files.FilesNotExist method),

51
task() (hammurabi.rules.ini.OptionRenamed method),

52
task() (hammurabi.rules.ini.OptionsExist method), 53
task() (hammurabi.rules.ini.OptionsNotExist method),

54
task() (hammurabi.rules.ini.SectionExists method), 55
task() (hammurabi.rules.ini.SectionNotExists

method), 56
task() (hammurabi.rules.ini.SectionRenamed method),

56
task() (hammurabi.rules.ini.SingleConfigFileRule

method), 57
task() (hammurabi.rules.operations.Copied method),

58

Index 97

Hammurabi Documentation, Release 0.5.0

task() (hammurabi.rules.operations.Moved method),
58

task() (hammurabi.rules.templates.TemplateRendered
method), 60

task() (hammurabi.rules.text.LineExists method), 61
task() (hammurabi.rules.text.LineNotExists method),

62
task() (hammurabi.rules.text.LineReplaced method),

62
task() (hammurabi.rules.yaml.SingleDocumentYAMLFileRule

method), 63
task() (hammurabi.rules.yaml.YAMLKeyExists

method), 64
task() (hammurabi.rules.yaml.YAMLKeyNotExists

method), 64
task() (hammurabi.rules.yaml.YAMLKeyRenamed

method), 65
task() (hammurabi.rules.yaml.YAMLValueExists

method), 66
task() (hammurabi.rules.yaml.YAMLValueNotExists

method), 68
TemplateRendered (class in ham-

murabi.rules.templates), 59
TOMLSettings (class in hammurabi.config), 69

V
validate() (hammurabi.rules.abstract.AbstractRule

static method), 40

Y
YAMLKeyExists (class in hammurabi.rules.yaml), 63
YAMLKeyNotExists (class in hammurabi.rules.yaml),

64
YAMLKeyRenamed (class in hammurabi.rules.yaml), 65
YAMLValueExists (class in hammurabi.rules.yaml),

65
YAMLValueNotExists (class in ham-

murabi.rules.yaml), 67

98 Index

	Hammurabi
	Features
	Installation
	Configuration
	Command line options
	Usage examples
	Custom Rules
	Contributing
	Why Hammurabi?

	Installation
	Stable release
	From sources

	Configuration
	Overview
	Hammurabi configuration
	Pillar configuration

	Rules
	Base rule
	Attributes
	Directories
	Files
	Ini files
	Operations
	Templates
	Text files
	YAML files

	Preconditions
	Base precondition

	Reporters
	Base reporter
	Formatted reporters

	hammurabi
	hammurabi package

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Releasing

	Vulnerabilities
	Reporting vulnerabilities

	Credits
	Development Lead
	Contributors

	CHANGELOG
	Unreleased
	0.5.0 - 2020-03-31
	0.4.0 - 2020-03-31
	0.3.1 - 2020-03-26
	0.3.0 - 2020-03-25
	0.2.0 - 2020-03-23
	0.1.2 - 2020-03-18
	0.1.1 - 2020-03-17
	0.1.0 - 2020-03-12

	Indices and tables
	Python Module Index
	Index

