

Documentation of Hammurabi

	Hammurabi
	Features

	Community

	Installation

	Configuration

	Usage examples

	Custom Rules

	Custom Preconditions

	Command line options

	Contributing

	Why Hammurabi?

	Installation
	Stable release

	Installing extras

	From sources

	Configuration
	Overview

	Hammurabi configuration

	Pillar configuration

	Rules
	Base rule

	Attributes

	Directories

	Files

	Ini files

	Json files

	Operations

	Templates

	Text files

	Yaml files

	TOML files

	Preconditions
	Base precondition

	Attributes

	Directories

	Files

	Text files

	Reporters
	Base reporter

	Formatted reporters

	Notifications
	Base notification

	Slack notification

	hammurabi
	hammurabi package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Releasing

	Vulnerabilities
	Reporting vulnerabilities

	Credits
	Development Lead

	Maintainers

	Contributors

	CHANGELOG
	Unreleased

	0.11.1 - 2020-10-20

	0.11.0 - 2020-09-19

	0.10.0 - 2020-08-14

	0.9.1 - 2020-08-08

	0.9.0 - 2020-08-07

	0.8.2 - 2020-07-31

	0.8.1 - 2020-07-20

	0.8.0 - 2020-07-15

	0.7.4 - 2020-07-14

	0.7.3 - 2020-05-25

	0.7.2 - 2020-05-25

	0.7.1 - 2020-05-22

	0.7.0 - 2020-04-28

	0.6.0 - 2020-04-06

	0.5.0 - 2020-03-31

	0.4.0 - 2020-03-31

	0.3.1 - 2020-03-26

	0.3.0 - 2020-03-25

	0.2.0 - 2020-03-23

	0.1.2 - 2020-03-18

	0.1.1 - 2020-03-17

	0.1.0 - 2020-03-12

Indices and tables

	Index

	Module Index

	Search Page

Hammurabi

[image: PyPi Package]
 [https://pypi.python.org/pypi/hammurabi][image: Build Status]
 [https://travis-ci.org/gabor-boros/hammurabi][image: Documentation Status]
 [https://hammurabi.readthedocs.io/en/latest/?badge=latest][image: Maintainability]
 [https://codeclimate.com/github/gabor-boros/hammurabi/maintainability][image: Test Coverage]
 [https://codeclimate.com/github/gabor-boros/hammurabi/test_coverage][image: Black Formatted]
 [https://github.com/ambv/black][image: CII Best Practices]
 [https://bestpractices.coreinfrastructure.org/projects/3587]Mass changes made easy.

Hammurabi is an extensible CLI tool responsible for enforcing user-defined rules
on a git repository.

Features

Hammurabi integrates well with both git and Github to make sure that the
execution happens on a separate branch and the committed changes are pushed
to the target repository. After pushing to the target repository, a pull
request will be opened.

Hammurabi supports several operations (Rules) by default. These Rules can do

	file and directory operations like copy, move, create or delete

	manipulation of attributes like ownership or access permissions change

	file and directory manipulations

	piped rule execution (output of a rule is the input of the next rule)

	children rule execution (output of a rule is the input of the upcoming rules)

	creating files from Jinja2 templates

	send notification on git push

Supported file formats:

	plain text

	ini

	json

	yaml (basic, single document operations)

	toml

Upcoming file format support:

	hocon

Community

If you need help or you would like to be part of the Hammurabi community, join us on discord [https://discord.gg/dj8Myk5].

Installation

Hammurabi can be installed by running pip install hammurabi and it requires
Python 3.7.0+ to run. This is the preferred method to install Hammurabi, as it
will always install the most recent stable release. If you don’t have pip [https://pip.pypa.io]
installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Installing extras

Hammurabi tries to be as tiny as its possible, hence some rules are requiring extra
dependencies to be installed. Please check the documentation of the Rules to know
which dependency is required to use the specific rule.

To install hammurabi with an extra package run pip install hammurabi[<EXTRA>],
where <EXTRA> is the name of the extra option. To install multiple extra packages
list the extra names separated by comma as described in pip’s examples [https://pip.pypa.io/en/stable/reference/pip_install/#examples] section point
number six.

	Extra

	Description

	all

	alias to install all the extras available

	ini

	needed for ini/cfg based rules

	ujson

	install if you need faster json manipulat

	yaml

	needed for yaml based rules

	templating

	needed for rules which are using templates

	slack-notifications

	needed for slack webhook notifications

Configuration

For configuration instructions, please visit the documentation [https://hammurabi.readthedocs.io/en/latest/config.html] site.

Usage examples

In every case, make sure that you clone the target repository prior using Hammurabi.
After cloning the repository, always set the current working directory to the target’s
path. Hammurabi will not clone the target repository or change its execution directory.

Enforce registered laws

$ hammurabi enforce
[INFO] 2020-14-07 16:31 - Checkout branch "hammurabi"
[INFO] 2020-14-07 16:31 - Executing law "L001"
[INFO] 2020-14-07 16:31 - Running task for "configure file exists"
[INFO] 2020-14-07 16:31 - Rule "configure file exists" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Minimum clang version is set"
[INFO] 2020-14-07 16:31 - Rule "Minimum clang version is set" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Minimum icc version is set"
[INFO] 2020-14-07 16:31 - Rule "Minimum icc version is set" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Minimum lessc version is set"
[INFO] 2020-14-07 16:31 - Rule "Minimum lessc version is set" finished successfully
[INFO] 2020-14-07 16:31 - Running task for "Maximum lessc version is set"
[INFO] 2020-14-07 16:31 - Rule "Maximum lessc version is set" finished successfully
[INFO] 2020-14-07 16:31 - Pushing changes
[INFO] 2020-14-07 16:35 - Checking for opened pull request
[INFO] 2020-14-07 16:35 - Opening pull request

Custom Rules

Although the project aims to support as many general operations as it can,
the need for adding custom rules may arise.

To extend Hammurabi with custom rules, you will need to inherit a class
from Rule and define its abstract methods.

The following example will show you how to create and use a custom rule.
For more reference please check how the existing rules are implemented.

custom.py
import shutil
import logging
from hammurabi.mixins import GitMixin
from hammurabi.rules.base import Rule

class CustomOwnerChanged(Rule, GitMixin):
 """
 Change the ownership of a file or directory to <original user>:admin.
 """

 def __init__(self, name: str, path: Optional[Path] = None, **kwargs):
 super().__init__(name, path, **kwargs)

 def post_task_hook(self):
 self.git_add(self.param)

 def task(self) -> Path:
 # Since ``Rule`` is setting its 2nd parameter to ``self.param``,
 # we can use ``self.param`` to access the target file's path.
 logging.debug('Changing group of "%s" to admin', str(self.param))
 shutil.chown(self.param, group="admin")
 return self.param

Custom Preconditions

Rule execution supports preconditions. The logic is simple: if all preconditions
pass, the rule is executed. Otherwise it will be skipped.

custom.py
from hammurabi import IsLineExists

class IsPackage(IsLineExists):
 def __init__(self, **kwargs):
 super().__init__(path=Path("Jenkinsfile"), criteria="package", **kwargs)

Command line options

Usage: hammurabi [OPTIONS] COMMAND [ARGS]...

Hammurabi is an extensible CLI tool responsible for enforcing user-defined
rules on a git repository.

Find more information at: https://hammurabi.readthedocs.io/latest/

Options:
-c, --config PATH Set the configuration file. [default:
 pyproject.toml]

--repository TEXT Set the remote repository. Required format:
 owner/repository. [default:]

--token TEXT Set github access token. [default:]
--log-level [DEBUG|INFO|WARNING|ERROR]
 Set logging level. [default: INFO]
--install-completion [bash|zsh|fish|powershell|pwsh]
 Install completion for the specified shell.
--show-completion [bash|zsh|fish|powershell|pwsh]
 Show completion for the specified shell, to
 copy it or customize the installation.

--help Show this message and exit.

Commands:
enforce Execute registered laws.
version Print hammurabi version.

Contributing

Hurray, You reached this section, which means you are ready
to contribute.

Please read our contibuting guideline [https://github.com/gabor-boros/hammurabi/blob/master/CONTRIBUTING.rst]. This guideline will
walk you through how can you successfully contribute to
Hammurabi.

Installation

For development you will need poetry [https://python-poetry.org/docs/#installation] and pre-commit [https://pre-commit.com/#install]. After poetry installed,
simply run poetry install -E all. This command will both create the virtualenv
and install all development dependencies for you.

Useful make Commands

	Command

	Description

	help

	Print available make commands

	clean

	Remove all artifacts

	clean-build

	Remove build artifacts

	clean-mypy

	Remove mypy artifacts

	clean-pyc

	Remove Python artifacts

	clean-test

	Remove test artifacts

	docs

	Generate Sphinx documentation

	format

	Run several formatters

	lint

	Run several linters after format

	test

	Run all tests with coverage

	test-unit

	Run unit tests with coverage

	test-integration

	Run integration tests with coverage

Why Hammurabi?

Hammurabi was the sixth king in the Babylonian dynasty,
which ruled in central Mesopotamia from c. 1894 to 1595 B.C.

The Code of Hammurabi was one of the earliest and most
complete written legal codes and was proclaimed by the
Babylonian king Hammurabi, who reigned from 1792 to 1750 B.C.
Hammurabi expanded the city-state of Babylon along the Euphrates
River to unite all of southern Mesopotamia. The Hammurabi code
of laws, a collection of 282 rules, established standards for
commercial interactions and set fines and punishments to meet
the requirements of justice. Hammurabi’s Code was carved onto
a massive, finger-shaped black stone stele (pillar) that was
looted by invaders and finally rediscovered in 1901.

Installation

Stable release

To install Hammurabi, run this command in your terminal:

$ pip install hammurabi

This is the preferred method to install Hammurabi, as it will always install
the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Installing extras

Hammurabi tries to be as tiny as its possible, hence some rules are requiring extra
dependencies to be installed. Please check the documentation of the Rules to know
which dependency is required to use the specific rule.

To install hammurabi with an extra package run pip install hammurabi[<EXTRA>],
where <EXTRA> is the name of the extra option. To install multiple extra packages
list the extra names separated by comma as described in pip’s examples [https://pip.pypa.io/en/stable/reference/pip_install/#examples] section point
number six.

	Extra

	Description

	all

	alias to install all the extras available

	ini

	needed for ini/cfg based rules

	ujson

	install if you need faster json manipulat

	yaml

	needed for yaml based rules

	templating

	needed for rules which are using templates

	slack-notifications

	needed for slack webhook notifications

From sources

The sources for Hammurabi can be downloaded from the Github repo [https://github.com/gabor-boros/hammurabi].

You can either clone the public repository:

$ git clone git://github.com/gabor-boros/hammurabi

Or download the tarball [https://github.com/gabor-boros/hammurabi/tarball/master]:

$ curl -OL https://github.com/gabor-boros/hammurabi/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Configuration

Overview

Hammurabi configuration

You can set the following options in your pyproject.toml
config file’s [hammurabi] section. Config option marked with * (asterisk)
is mandatory (set by CLI argument or project config). Hammurabi can be configured
through environment variables too. To use an environment variable based config option
set the HAMMURABI_<CONFIG_OPTION> where <CONFIG_OPTION> is in uppercase and
matches one of the options below.

	Config option

	Description

	Default value

	pillar_config *

	location of pillar config

	None

	pillar_name

	name of the pillar variable

	pillar

	log_level

	logging level of the program

	INFO

	log_path

	path to the log file or None

	./hammurabi.log

	log_format

	format of the log lines

	BASIC_FORMAT

	repository

	git repository (owner/repo)

	None

	git_branch_name

	working branch name

	hammurabi

	allow_push

	allow Hammurabi to push to remote

	True

	dry_run

	enforce without any modification

	False

	rule_can_abort

	if a rule fails it aborts the whole execution

	False

	report_name

	report file’s name to generate

	hammurabi_report.json

For HTTPS git remotes do not forget to set the GIT_USERNAME and GIT_PASSWORD
environment variables. For SSH git remotes please add your ssh key before using
Hammurabi.

Examples

Example content of the pyproject.toml file.

[hammurabi]
pillar_config = "/tmp/config/global_config.py"
working_dir = "/tmp/clones/hammurabi"
repository = "gabor-boros/hammurabi"
git_branch_name = "custom-branch-name"
log_level = "WARNING"
log_file = "/var/log/hammurabi.log"
log_format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
rule_can_abort = true
report_name = "hammurabi_report.json"

Pillar configuration

The pillar needs no configuration. All the thing the developer
must do is creating a hammurabi.pillar.Pillar object
and registering the laws to it.

Using custom rules

Custom rules are not different from built-in one. In case
of a custom rule, just import and use it.

Examples

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionExists
>>>
>>> rule = SectionExists(
>>> name="Ensure section exists",
>>> path=Path("/tmp/test.cfg"),
>>> section="test_section",
>>> target="main",
>>> options=(("option_1", "some value"), ("option_2", True)),
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(rule)

Rules

Base rule

	
class hammurabi.rules.base.Rule(name: str, param: Any, preconditions: Iterable[hammurabi.preconditions.base.Precondition] = (), pipe: Optional[Rule] = None, children: Iterable[Rule] = ())[source]

	Abstract class which describes the bare minimum and helper functions for Rules.
A rule defines what and how should be executed. Since a rule can have piped and
children rules, the “parent” rule is responsible for those executions. This kind
of abstraction allows to run both piped and children rules sequentially in a given
order.

Example usage:

>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Rule
>>> from hammurabi.mixins import GitMixin
>>>
>>> class SingleFileRule(Rule, GitMixin):
>>> def __init__(self, name: str, path: Optional[Path] = None, **kwargs) -> None:
>>> super().__init__(name, path, **kwargs)
>>>
>>> def post_task_hook(self):
>>> self.git_add(self.param)
>>>
>>> @abstractmethod
>>> def task(self) -> Path:
>>> pass

	Parameters

	
	name (str) – Name of the rule which will be used for printing

	param (Any) – Input parameter of the rule will be used as self.param

	preconditions (Iterable["Rule"]) – “Boolean Rules” which returns a truthy or falsy value

	pipe (Optional["Rule"]) – Pipe will be called when the rule is executed successfully

	children (Iterable["Rule"]) – Children will be executed after the piped rule if there is any

Warning

Preconditions can be used in several ways. The most common way is to run
“Boolean Rules” which takes a parameter and returns a truthy or falsy value.
In case of a falsy return, the precondition will fail and the rule will not be executed.

If any modification is done by any of the rules which are used as a
precondition, those changes will be committed.

Attributes

OwnerChanged

	
class hammurabi.rules.attributes.OwnerChanged(name: str, path: Optional[pathlib.Path] = None, new_value: Optional[str] = None, **kwargs)[source]

	Change the ownership of a file or directory.

The new ownership of a file or directory can be set in three ways.
To set only the user use new_value="username". To set only the
group use new_value=":group_name" (please note the colon :).
It is also possible to set both username and group at the same time
by using new_value="username:group_name".

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

ModeChanged

	
class hammurabi.rules.attributes.ModeChanged(name: str, path: Optional[pathlib.Path] = None, new_value: Optional[int] = None, **kwargs)[source]

	Change the mode of a file or directory.

Supported modes:

	Config option

	Description

	stat.S_ISUID

	Set user ID on execution.

	stat.S_ISGID

	Set group ID on execution.

	stat.S_ENFMT

	Record locking enforced.

	stat.S_ISVTX

	Save text image after execution.

	stat.S_IREAD

	Read by owner.

	stat.S_IWRITE

	Write by owner.

	stat.S_IEXEC

	Execute by owner.

	stat.S_IRWXU

	Read, write, and execute by owner.

	stat.S_IRUSR

	Read by owner.

	stat.S_IWUSR

	Write by owner.

	stat.S_IXUSR

	Execute by owner.

	stat.S_IRWXG

	Read, write, and execute by group.

	stat.S_IRGRP

	Read by group.

	stat.S_IWGRP

	Write by group.

	stat.S_IXGRP

	Execute by group.

	stat.S_IRWXO

	Read, write, and execute by others.

	stat.S_IROTH

	Read by others.

	stat.S_IWOTH

	Write by others.

	stat.S_IXOTH

	Execute by others.

Example usage:

>>> import stat
>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, ModeChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> ModeChanged(
>>> name="Update script must be executable",
>>> path=Path("./scripts/update.sh"),
>>> new_value=stat.S_IXGRP | stat.S_IXGRP | stat.S_IXOTH
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Directories

DirectoryExists

	
class hammurabi.rules.directories.DirectoryExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Ensure that a directory exists. If the directory does not exists,
make sure the directory is created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryExists(
>>> name="Create secrets directory",
>>> path=Path("./secrets")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

DirectoryNotExists

	
class hammurabi.rules.directories.DirectoryNotExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Ensure that the given directory does not exists. In case the directory
contains any file or sub-directory, those will be removed too.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryNotExists(
>>> name="Remove unnecessary directory",
>>> path=Path("./temp")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

DirectoryEmptied

	
class hammurabi.rules.directories.DirectoryEmptied(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Ensure that the given directory’s content is removed. Please note the
difference between emptying a directory and recreating it. The latter
results in lost ACLs, permissions and modes.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryEmptied(
>>> name="Empty results directory",
>>> path=Path("./test-results")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Files

FileExists

	
class hammurabi.rules.files.FileExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Ensure that a file exists. If the file does not exists,
make sure the file is created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create service descriptor",
>>> path=Path("./service.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

FilesExist

	
class hammurabi.rules.files.FilesExist(name: str, paths: Optional[Iterable[pathlib.Path]] = (), **kwargs)[source]

	Ensure that all files exists. If the files does not exists,
make sure the files are created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesExist(
>>> name="Create test files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

FileNotExists

	
class hammurabi.rules.files.FileNotExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Ensure that the given file does not exists. If the file exists
remove it, otherwise do nothing and return the original path.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileNotExists(
>>> name="Remove unused file",
>>> path=Path("./debug.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

FilesNotExist

	
class hammurabi.rules.files.FilesNotExist(name: str, paths: Optional[Iterable[pathlib.Path]] = (), **kwargs)[source]

	Ensure that the given files does not exist. If the files exist
remove them, otherwise do nothing and return the original paths.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesNotExist(
>>> name="Remove several files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

FileEmptied

	
class hammurabi.rules.files.FileEmptied(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Remove the content of the given file, but keep the file. Please note the
difference between emptying a file and recreating it. The latter
results in lost ACLs, permissions and modes.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileEmptied(
>>> name="Empty the check log file",
>>> path=Path("/var/log/service/check.log")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Ini files

SectionExists

	
class hammurabi.rules.ini.SectionExists(name: str, path: Optional[pathlib.Path] = None, match: Optional[str] = None, options: Iterable[Tuple[str, Any]] = (), add_after: bool = True, **kwargs)[source]

	Ensure that the given config section exists. If needed, the rule will create
a config section with the given name, and optionally the specified options. In
case options are set, the config options will be assigned to that config sections.

Similarly to hammurabi.rules.text.LineExists, this rule is able to add a
section before or after a match section. The limitation compared to LineExists
is that the SectionExists rule is only able to add the new entry exactly before
or after its match.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionExists(
>>> name="Ensure section exists",
>>> path=Path("./config.ini"),
>>> section="polling",
>>> match="add_after_me",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

Warning

When using match be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

Warning

When options parameter is set, make sure you are using an iterable tuple.
The option keys must be strings, but there is no limitation for the value. It can
be set to anything what the parser can handle. For more information on the parser,
please visit the documentation of configupdater [https://configupdater.readthedocs.io/en/latest/].

SectionNotExists

	
class hammurabi.rules.ini.SectionNotExists(name: str, path: Optional[pathlib.Path] = None, section: Optional[str] = None, **kwargs)[source]

	Make sure that the given file not contains the specified line. When a section
removed, all the options belonging to it will be removed too.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionNotExists(
>>> name="Ensure section removed",
>>> path=Path("./config.ini"),
>>> section="invalid",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

SectionRenamed

	
class hammurabi.rules.ini.SectionRenamed(name: str, path: Optional[pathlib.Path] = None, new_name: Optional[str] = None, **kwargs)[source]

	Ensure that a section is renamed. None of its options will be changed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionRenamed(
>>> name="Ensure section renamed",
>>> path=Path("./config.ini"),
>>> section="polling",
>>> new_name="fetching",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

OptionsExist

	
class hammurabi.rules.ini.OptionsExist(name: str, path: Optional[pathlib.Path] = None, options: Iterable[Tuple[str, Any]] = None, force_value: bool = False, **kwargs)[source]

	Ensure that the given config option exists. If needed, the rule will create
a config option with the given value. In case the force_value parameter is
set to True, the original values will be replaced by the give ones.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionsExist(
>>> name="Ensure options are changed",
>>> path=Path("./config.ini"),
>>> section="fetching",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>> force_value=True,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

Warning

When using the force_value parameter, please note that all the existing
option values will be replaced by those set in options parameter.

OptionsNotExist

	
class hammurabi.rules.ini.OptionsNotExist(name: str, path: Optional[pathlib.Path] = None, options: Iterable[str] = (), **kwargs)[source]

	Remove one or more option from a section.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionsNotExist(
>>> name="Ensure options are removed",
>>> path=Path("./config.ini"),
>>> section="invalid",
>>> options=(
>>> "remove",
>>> "me",
>>> "please",
>>>)
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

OptionRenamed

	
class hammurabi.rules.ini.OptionRenamed(name: str, path: Optional[pathlib.Path] = None, option: Optional[str] = None, new_name: Optional[str] = None, **kwargs)[source]

	Ensure that an option of a section is renamed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionRenamed(
>>> name="Rename an option",
>>> path=Path("./config.ini"),
>>> section="my_section",
>>> option="typo",
>>> new_name="correct",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

Json files

JsonKeyExists

	
class hammurabi.rules.json.JsonKeyExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Ensure that the given key exists. If needed, the rule will create a key with the
given name, and optionally the specified value. In case the value is set, the value
will be assigned to the key. If no value is set, the key will be created with an empty
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.json"),
>>> key="stack",
>>> value="my-awesome-stack",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a
key before or after a match.

JsonKeyNotExists

	
class hammurabi.rules.json.JsonKeyNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', **kwargs)[source]

	Ensure that the given key not exists. If needed, the rule will remove a key with the
given name, including its value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.json"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

JsonKeyRenamed

	
class hammurabi.rules.json.JsonKeyRenamed(name: str, path: Optional[pathlib.Path] = None, key: str = '', new_name: str = '', **kwargs)[source]

	Ensure that the given key is renamed. In case the key can not be found,
a LookupError exception will be raised to stop the execution. The
execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.json"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

JsonValueExists

	
class hammurabi.rules.json.JsonValueExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Ensure that the given key has the expected value(s). In case the key cannot
be found, a LookupError exception will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For
more information please read the warning below.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.json"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> JsonValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.json"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> JsonValueExists(
>>> name="Add support info",
>>> path=Path("./service.json"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> JsonValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.json"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Since the value can be anything from None to a list of lists, and
rule piping passes the 1st argument (path) to the next rule the value
parameter can not be defined in __init__ before the path. Hence
the value parameter must have a default value. The default value is
set to None, which translates to the following:

Using the JsonValueExists rule and not assigning value to value
parameter will set the matching key’s value to None` by default in
the document.

JsonValueNotExists

	
class hammurabi.rules.json.JsonValueNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[str, int, float] = None, **kwargs)[source]

	Ensure that the key has no value given. In case the key cannot be found,
a LookupError exception will be raised to stop the execution.

Compared to hammurabi.rules.json.JsonValueExists, this rule can only
accept simple value for its value parameter. No list, dict, or
None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types)
value provided in the value parameter the value is:

	Set to None (if the key’s value’s type is not a dict or list)

	Removed from the list (if the key’s value’s type is a list)

	Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.json"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Operations

Moved

	
class hammurabi.rules.operations.Moved(name: str, path: Optional[pathlib.Path] = None, destination: Optional[pathlib.Path] = None, **kwargs)[source]

	Move a file or directory from “A” to “B”.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Moved
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Moved(
>>> name="Move pyproject.toml to its place",
>>> path=Path("/tmp/generated/pyproject.toml.template"),
>>> destination=Path("./pyproject.toml"), # Notice the rename!
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Renamed

	
class hammurabi.rules.operations.Renamed(name: str, path: Optional[pathlib.Path] = None, new_name: Optional[str] = None, **kwargs)[source]

	This rule is a shortcut for hammurabi.rules.operations.Moved.
Instead of destination path a new name is required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml.bkp",
>>> path=Path("/tmp/generated/pyproject.toml.bkp"),
>>> new_name="pyproject.toml",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Copied

	
class hammurabi.rules.operations.Copied(name: str, path: Optional[pathlib.Path] = None, destination: Optional[pathlib.Path] = None, **kwargs)[source]

	Ensure that the given file or directory is copied to the new path.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Copied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Copied(
>>> name="Create backup file",
>>> path=Path("./service.yaml"),
>>> destination=Path("./service.bkp.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Templates

TemplateRendered

	
class hammurabi.rules.templates.TemplateRendered(name: str, template: Optional[pathlib.Path] = None, destination: Optional[pathlib.Path] = None, context: Optional[Dict[str, Any]] = None, **kwargs)[source]

	Render a file from a Jinja2 template. In case the destination
file not exists, this rule will create it, otherwise the file will
be overridden.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TemplateRendered
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TemplateRendered(
>>> name="Create gunicorn config from template",
>>> template=Path("/tmp/templates/gunicorn.conf.py"),
>>> destination=Path("./gunicorn.conf.py"),
>>> context={
>>> "keepalive": 65
>>> },
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the templating extra to be installed.

Text files

LineExists

	
class hammurabi.rules.text.LineExists(name: str, path: Optional[pathlib.Path] = None, text: Optional[str] = None, match: Optional[str] = None, position: int = 1, respect_indentation: bool = True, ensure_trailing_newline: bool = False, **kwargs)[source]

	Make sure that the given file contains the required line. This rule is
capable for inserting the expected text before or after the unique match
text respecting the indentation of its context.

The default behaviour is to insert the required text exactly after the
match line, and respect its indentation. Please note that text``and
``match parameters are required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineExists, IsLineNotExist
>>>
>>> gunicorn_config = Path("./gunicorn.conf.py")
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineExists(
>>> name="Extend gunicorn config",
>>> path=gunicorn_config,
>>> text="keepalive = 65",
>>> match=r"^bind.*",
>>> preconditions=[
>>> IsLineNotExist(path=gunicorn_config, criteria=r"^keepalive.*")
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

When using match be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

Note

The indentation of the match text will be extracted by a simple
regular expression. If a more complex regexp is required, please
inherit from this class.

LineNotExists

	
class hammurabi.rules.text.LineNotExists(name: str, path: Optional[pathlib.Path] = None, text: Optional[str] = None, **kwargs)[source]

	Make sure that the given file not contains the specified line.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineNotExists(
>>> name="Remove keepalive",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

LineReplaced

	
class hammurabi.rules.text.LineReplaced(name: str, path: Optional[pathlib.Path] = None, text: Optional[str] = None, match: Optional[str] = None, respect_indentation: bool = True, **kwargs)[source]

	Make sure that the given text is replaced in the given file.

The default behaviour is to replace the required text with the
exact same indentation that the “match” line has. This behaviour
can be turned off by setting the respect_indentation parameter
to False. Please note that text and match parameters are
required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineReplaced
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineReplaced(
>>> name="Replace typo using regex",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>> match=r"^kepalive.*",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The indentation of the text will be extracted by a simple
regular expression. If a more complex regexp is required, please
inherit from this class.

Warning

When using match be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

Warning

This rule will replace all the matching lines in the given file.
Make sure the given match regular expression is tested before
the rule used against production code.

Yaml files

YamlKeyExists

	
class hammurabi.rules.yaml.YamlKeyExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Ensure that the given key exists. If needed, the rule will create a key with the
given name, and optionally the specified value. In case the value is set, the value
will be assigned to the key. If no value is set, the key will be created with an empty
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.yaml"),
>>> key="stack",
>>> value="my-awesome-stack",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

This rule requires the yaml extra to be installed.

Warning

Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a
key before or after a match.

YamlKeyNotExists

	
class hammurabi.rules.yaml.YamlKeyNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', **kwargs)[source]

	Ensure that the given key not exists. If needed, the rule will remove a key with the
given name, including its value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.yaml"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the yaml extra to be installed.

YamlKeyRenamed

	
class hammurabi.rules.yaml.YamlKeyRenamed(name: str, path: Optional[pathlib.Path] = None, key: str = '', new_name: str = '', **kwargs)[source]

	Ensure that the given key is renamed. In case the key can not be found,
a LookupError exception will be raised to stop the execution. The
execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the yaml extra to be installed.

YamlValueExists

	
class hammurabi.rules.yaml.YamlValueExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Ensure that the given key has the expected value(s). In case the key cannot
be found, a LookupError exception will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For
more information please read the warning below.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> YamlValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.yaml"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> YamlValueExists(
>>> name="Add support info",
>>> path=Path("./service.yaml"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> YamlValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.yaml"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

This rule requires the yaml extra to be installed.

Warning

Since the value can be anything from None to a list of lists, and
rule piping passes the 1st argument (path) to the next rule the value
parameter can not be defined in __init__ before the path. Hence
the value parameter must have a default value. The default value is
set to None, which translates to the following:

Using the YamlValueExists rule and not assigning value to value
parameter will set the matching key’s value to None` by default in
the document.

YamlValueNotExists

	
class hammurabi.rules.yaml.YamlValueNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[str, int, float] = None, **kwargs)[source]

	Ensure that the key has no value given. In case the key cannot be found,
a LookupError exception will be raised to stop the execution.

Compared to hammurabi.rules.yaml.YamlValueExists, this rule can only
accept simple value for its value parameter. No list, dict, or
None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types)
value provided in the value parameter the value is:

	Set to None (if the key’s value’s type is not a dict or list)

	Removed from the list (if the key’s value’s type is a list)

	Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the yaml extra to be installed.

TOML files

Warning

In case of a single line toml file, the parser used in hammurabi will only
keep the comment if the file contains a newline character.

TomlKeyExists

	
class hammurabi.rules.toml.TomlKeyExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Ensure that the given key exists. If needed, the rule will create a key with the
given name, and optionally the specified value. In case the value is set, the value
will be assigned to the key. If no value is set, the key will be created with an empty
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TomlKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TomlKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.toml"),
>>> key="stack",
>>> value="my-awesome-stack",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Setting a value to None will result in a deleted key as per the documentation of how
null/nil values should be handled. More info: https://github.com/toml-lang/toml/issues/30

Warning

Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a
key before or after a match.

TomlKeyNotExists

	
class hammurabi.rules.toml.TomlKeyNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', **kwargs)[source]

	Ensure that the given key not exists. If needed, the rule will remove a key with the
given name, including its value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TomlKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TomlKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.toml"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

TomlKeyRenamed

	
class hammurabi.rules.toml.TomlKeyRenamed(name: str, path: Optional[pathlib.Path] = None, key: str = '', new_name: str = '', **kwargs)[source]

	Ensure that the given key is renamed. In case the key can not be found,
a LookupError exception will be raised to stop the execution. The
execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TomlKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TomlKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.toml"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

TomlValueExists

	
class hammurabi.rules.toml.TomlValueExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Ensure that the given key has the expected value(s). In case the key cannot
be found, a LookupError exception will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For
more information please read the warning below.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TomlValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TomlValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.toml"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> TomlValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.toml"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> TomlValueExists(
>>> name="Add support info",
>>> path=Path("./service.toml"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> TomlValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.toml"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Since the value can be anything from None to a list of lists, and
rule piping passes the 1st argument (path) to the next rule the value
parameter can not be defined in __init__ before the path. Hence
the value parameter must have a default value. The default value is
set to None, which translates to the following:

Using the TomlValueExists rule and not assigning value to value
parameter will set the matching key’s value to None` by default in
the document.

TomlValueNotExists

	
class hammurabi.rules.toml.TomlValueNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[str, int, float] = None, **kwargs)[source]

	Ensure that the key has no value given. In case the key cannot be found,
a LookupError exception will be raised to stop the execution.

Compared to hammurabi.rules.Toml.TomlValueExists, this rule can only
accept simple value for its value parameter. No list, dict, or
None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types)
value provided in the value parameter the value is:

	Set to None (if the key’s value’s type is not a dict or list)

	Removed from the list (if the key’s value’s type is a list)

	Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TomlValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TomlValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.toml"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Preconditions

Base precondition

	
class hammurabi.preconditions.base.Precondition(name: Optional[str] = None, param: Optional[Any] = None)[source]

	This class which describes the bare minimum and helper functions for Preconditions.
A precondition defines what and how should be checked/validated before executing a Rule.
Since preconditions are special rules, all the functions available what can be used for
hammurabi.rules.base.AbstractRule.

As said, preconditions are special from different angles. While this is not true for
Rules, Preconditions will always have a name, hence giving a name to a Precondition is not
necessary. In case no name given to a precondition, the name will be the name of the class
and ” precondition” suffix.

Example usage:

>>> import logging
>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Precondition
>>>
>>> class IsFileExist(Precondition):
>>> def __init__(self, path: Optional[Path] = None, **kwargs) -> None:
>>> super().__init__(param=path, **kwargs)
>>>
>>> def task(self) -> bool:
>>> return self.param and self.param.exists()

	Parameters

	
	name (Optional[str]) – Name of the rule which will be used for printing

	param (Any) – Input parameter of the rule will be used as self.param

Attributes

IsOwnedBy

	
class hammurabi.preconditions.attributes.IsOwnedBy(path: pathlib.Path, owner: str, **kwargs)[source]

	Check if the given file or directory has the required ownership.

To check only the user use owner="username". To check only the
group use owner=":group_name" (please note the colon :).
It is also possible to check both username and group at the same time
by using owner="username:group_name".

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsOwnedBy
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml if owned by gabor",
>>> path=Path("./pyproject.toml"),
>>> new_name="gabor-pyproject.toml"
>>> preconditions=[
>>> IsOwnedBy(path=Path("./pyproject.toml"), owner="gabor")
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	
	path (Path) – Input file’s path

	owner (str) – Owner user and/or group of the file/directory separated by colon

IsNotOwnedBy

	
class hammurabi.preconditions.attributes.IsNotOwnedBy(path: pathlib.Path, owner: str, **kwargs)[source]

	Opposite of hammurabi.preconditions.attributes.IsOwnedBy.

HasMode

	
class hammurabi.preconditions.attributes.HasMode(path: pathlib.Path, mode: int, **kwargs)[source]

	Check if the given file or directory has the required permissions/mode.

You can read more about the available modes at https://docs.python.org/3/library/stat.html.

Example usage:

>>> import stat
>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, HasMode
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml if owned by gabor",
>>> path=Path("./pyproject.toml"),
>>> new_name="gabor-pyproject.toml"
>>> preconditions=[
>>> HasMode(path=Path("scripts/run_unittests.sh"), mode=stat.S_IXOTH)
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	
	path (Path) – Input file’s path

	mode (str) – The desired mode to check

HasNoMode

	
class hammurabi.preconditions.attributes.HasNoMode(path: pathlib.Path, mode: int, **kwargs)[source]

	Opposite of hammurabi.preconditions.attributes.HasMode.

Directories

IsDirectoryExist

	
class hammurabi.preconditions.directories.IsDirectoryExist(path: pathlib.Path, **kwargs)[source]

	Check if the given directory exists.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsDirectoryExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the dir if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsDirectoryExist(path=Path("other-dir"))
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	path (Path) – Input directory’s path

IsDirectoryNotExist

	
class hammurabi.preconditions.directories.IsDirectoryNotExist(path: pathlib.Path, **kwargs)[source]

	Opposite of hammurabi.preconditions.directories.IsDirectoryExist.

Files

IsFileExist

	
class hammurabi.preconditions.files.IsFileExist(path: pathlib.Path, **kwargs)[source]

	Check if the given file exists.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsFileExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the file if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsFileExist(path=Path("other-file"))
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	path (Path) – Input files’s path

IsFileNotExist

	
class hammurabi.preconditions.files.IsFileNotExist(path: pathlib.Path, **kwargs)[source]

	Opposite of hammurabi.preconditions.files.IsFileExist.

Text files

IsLineExist

	
class hammurabi.preconditions.text.IsLineExist(path: pathlib.Path, criteria: str, **kwargs)[source]

	Check if the given line exists.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsLineExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the file if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsLineExist(path=Path("other-file"), criteria=r"^string=some-value$")
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	
	path (Path) – Input files’s path

	criteria (str) – Regexp of the desired line

Warning

When using criteria be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

IsLineNotExist

	
class hammurabi.preconditions.text.IsLineNotExist(path: pathlib.Path, criteria: str, **kwargs)[source]

	Opposite of hammurabi.preconditions.text.IsLineExist.

Reporters

Base reporter

	
class hammurabi.reporters.base.Reporter(laws: List[hammurabi.law.Law])[source]

	Abstract class which describes the bare minimum and helper functions for Reporters.
A reporter can generate different outputs from the results of the execution. Also,
reporters can be extended by additional data which may not contain data for every
execution like GitHub pull request url. The report file’s name set by report_name
config parameter.

Note

Reporters measures the execution time for the complete execution from checking
out the git branch until the pull request creation finished. Although the
completion time is measured, it is not detailed for the rules. At this moment
measuring execution time of rules is not planned.

Example usage:

>>> from hammurabi.reporters.base import Reporter
>>>
>>>
>>> class JsonReporter(Reporter):
>>> def report(self) -> str:
>>> return self._get_report().json()

	Parameters

	laws (Iterable[Law]) – Iterable Law objects which will be included to the report

Formatted reporters

JsonReporter

	
class hammurabi.reporters.json.JsonReporter(laws: List[hammurabi.law.Law])[source]

	Generate reports in Json format and write into file. JsonReporter
is the default reporter of the pillar. The example below shows the
way how to replace a reporter which could base on the JsonReporter.

The report will be written into the configured report file. The report
file’s name set by report_name config parameter.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>> from my_company import MyJsonReporter
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> # override pillar's default JsonReporter reporter
>>> pillar = Pillar(reporter_class=MyJsonReporter)

Notifications

Base notification

	
class hammurabi.notifications.base.Notification(recipients: List[str], message_template: str)[source]

	A git push notification which serves as a base for different kind
of notifications like Slack or E-mail notification.

Slack notification

	
class hammurabi.notifications.slack.SlackNotification(recipients: List[str], message_template: str)[source]

	Send slack notification through Slack webhooks.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsDirectoryExist, SlackNotification
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the dir if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsDirectoryExist(path=Path("other-dir"))
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar(notifications=[
>>> SlackNotification(
>>> recipients=["https://slack.webhook.url"],
>>> message_template="Dear team, the {repository} has new update.",
>>>)
>>>])
>>> pillar.register(example_law)

Warning

This notification requires the slack-notifications extra to be installed.

hammurabi

	hammurabi package
	Subpackages
	hammurabi.notifications package
	Submodules

	hammurabi.notifications.base module

	hammurabi.notifications.slack module

	Module contents

	hammurabi.preconditions package
	Submodules

	hammurabi.preconditions.attributes module

	hammurabi.preconditions.base module

	hammurabi.preconditions.directories module

	hammurabi.preconditions.files module

	hammurabi.preconditions.text module

	Module contents

	hammurabi.reporters package
	Submodules

	hammurabi.reporters.base module

	hammurabi.reporters.json module

	Module contents

	hammurabi.rules package
	Submodules

	hammurabi.rules.abstract module

	hammurabi.rules.attributes module

	hammurabi.rules.base module

	hammurabi.rules.common module

	hammurabi.rules.dictionaries module

	hammurabi.rules.directories module

	hammurabi.rules.files module

	hammurabi.rules.ini module

	hammurabi.rules.json module

	hammurabi.rules.mixins module

	hammurabi.rules.operations module

	hammurabi.rules.templates module

	hammurabi.rules.text module

	hammurabi.rules.yaml module

	Module contents

	Submodules

	hammurabi.config module

	hammurabi.exceptions module

	hammurabi.helpers module

	hammurabi.law module

	hammurabi.main module

	hammurabi.mixins module

	hammurabi.pillar module

	Module contents

hammurabi package

Subpackages

	hammurabi.notifications package
	Submodules

	hammurabi.notifications.base module

	hammurabi.notifications.slack module

	Module contents

	hammurabi.preconditions package
	Submodules

	hammurabi.preconditions.attributes module

	hammurabi.preconditions.base module

	hammurabi.preconditions.directories module

	hammurabi.preconditions.files module

	hammurabi.preconditions.text module

	Module contents

	hammurabi.reporters package
	Submodules

	hammurabi.reporters.base module

	hammurabi.reporters.json module

	Module contents

	hammurabi.rules package
	Submodules

	hammurabi.rules.abstract module

	hammurabi.rules.attributes module

	hammurabi.rules.base module

	hammurabi.rules.common module

	hammurabi.rules.dictionaries module

	hammurabi.rules.directories module

	hammurabi.rules.files module

	hammurabi.rules.ini module

	hammurabi.rules.json module

	hammurabi.rules.mixins module

	hammurabi.rules.operations module

	hammurabi.rules.templates module

	hammurabi.rules.text module

	hammurabi.rules.yaml module

	Module contents

Submodules

hammurabi.config module

	
class hammurabi.config.CommonSettings(_env_file: Optional[Union[pathlib.Path, str]] = '<object object>', _env_file_encoding: Optional[str] = None, *, allow_push: bool = True, dry_run: bool = False, rule_can_abort: bool = False, git_branch_name: str = 'hammurabi', git_base_name: str = 'master', repository: str = '', report_name: pathlib.Path = PosixPath('hammurabi_report.json'))[source]

	Bases: pydantic.env_settings.BaseSettings

Common settings which applies to both TOML and CLI
configuration of Hammurabi.

Pillar configuration is intentionally not listed since
it is represented as a string in the TOML configuration, but
used the parsed variable in the CLI configuration.

	
class Config[source]

	Bases: object

BaseSettings’ config describing how the settings will be handled.
The given env_prefix will make sure that settings can be read from
environment variables starting with HAMMURABI_.

	
env_prefix = 'hammurabi_'

	

	
allow_push: bool

	

	
dry_run: bool

	

	
git_base_name: str

	

	
git_branch_name: str

	

	
report_name: pathlib.Path

	

	
repository: str

	

	
rule_can_abort: bool

	

	
class hammurabi.config.Config[source]

	Bases: object

Simple configuration object which used across Hammurabi.
The Config loads the given pyproject.toml according
to PEP-518.

Warning

When trying to use GitHub based laws without an initialized GitHub
client (or invalid token), a warning will be thrown at the beginning
of the execution. In case a PR open is attempted, a RuntimeError
will be raised

	
load()[source]

	Handle configuration loading from project toml file and make sure
the configuration are initialized and merged. Also, make sure that
logging is set properly. Before loading the configuration, it is a
requirement to set the HAMMURABI_SETTINGS_PATH as it will contain
the path to the toml file what Hammurabi expects. This is needed
for cases when the 3rd party rules would like to read the configuration
of Hammurabi.

… note:

The HAMMURABI_SETTINGS_PATH environment variable is set by the CLI
by default, so there is no need to set if no 3rd party rules are used
or those rules are not loading config.

	Raises

	Runtime error if HAMMURABI_SETTINGS_PATH environment variable is not
set or an invalid git repository was given.

	
class hammurabi.config.Settings(_env_file: Optional[Union[pathlib.Path, str]] = '<object object>', _env_file_encoding: Optional[str] = None, *, allow_push: bool = True, dry_run: bool = False, rule_can_abort: bool = False, git_branch_name: str = 'hammurabi', git_base_name: str = 'master', repository: str = '', report_name: pathlib.Path = PosixPath('hammurabi_report.json'), pillar: object = None)[source]

	Bases: hammurabi.config.CommonSettings

CLI related settings which are directly needed for the
execution.

	
pillar: object

	

	
class hammurabi.config.TOMLSettings(_env_file: Optional[Union[pathlib.Path, str]] = '<object object>', _env_file_encoding: Optional[str] = None, *, allow_push: bool = True, dry_run: bool = False, rule_can_abort: bool = False, git_branch_name: str = 'hammurabi', git_base_name: str = 'master', repository: str = '', report_name: pathlib.Path = PosixPath('hammurabi_report.json'), github_token: str = '', log_level: str = 'INFO', log_path: pathlib.Path = PosixPath('hammurabi.log'), log_format: str = '%(levelname)s:%(name)s:%(message)s', pillar_config: pathlib.Path = PosixPath('pillar.conf.py'), pillar_name: str = 'pillar')[source]

	Bases: hammurabi.config.CommonSettings

TOML Project configuration settings. Most of the fields
are used to compose other configuration fields like
github_token or pillar.

	
github_token: str

	

	
log_format: str

	

	
log_level: str

	

	
log_path: Optional[pathlib.Path]

	

	
pillar_config: pathlib.Path

	

	
pillar_name: str

	

hammurabi.exceptions module

	
exception hammurabi.exceptions.AbortLawError[source]

	Bases: Exception

Custom exception to make sure that own exception types are
caught by the Law’s execution.

	
exception hammurabi.exceptions.NotificationSendError[source]

	Bases: Exception

Custom exception to make sure that own exception types are
caught when sending notifications.

	
exception hammurabi.exceptions.PreconditionFailedError[source]

	Bases: Exception

Custom exception representing a failed precondition. In case a
precondition failed, there is no need to raise an error and report
the rule as a failure. The precondition is for checking that a rule
should or shouldn’t run; not for breaking the execution.

hammurabi.helpers module

	
hammurabi.helpers.full_strip(value: str) → str[source]

	Strip every line.

hammurabi.law module

This module contains the definition of Law which is responsible for
the execution of its registered Rules. Every Law can have multiple rules to execute.

In case a rule raises an exception the execution may abort and none of
the remaining rules will be executed neither pipes or children. An abort
can cause an inconsistent state or a dirty git branch. If rule_can_abort
config is set to True, the whole execution of the :class:hammurabi.pillar.Pillar
will be aborted and the original exception will be re-raised.

	
class hammurabi.law.Law(name: str, description: str, rules: Iterable[hammurabi.rules.base.Rule], preconditions: Iterable[hammurabi.preconditions.base.Precondition] = ())[source]

	Bases: hammurabi.mixins.GitMixin

A Law is a collection of Rules which is responsible for the rule execution
and git committing.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create pyproject.toml",
>>> path=Path("./pyproject.toml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
property can_proceed

	Evaluate if the execution can be continued. If preconditions are set,
those will be evaluated by this method.

	Returns

	Return with the result of evaluation

	Return type

	bool

Warning

hammurabi.rules.base.Rule.can_proceed() checks the result of
self.preconditions, which means the preconditions are executed.
Make sure that you are not doing any modifications within rules used
as preconditions, otherwise take extra attention for those rules.

	
commit() → None[source]

	Commit the changes made by registered rules and add a
meaningful commit message.

Example commit message:

Migrate to next generation project template
* Create pyproject.toml
* Add meta info from setup.py to pyproject.toml
* Add existing dependencies
* Remove requirements.txt
* Remove setup.py

	
property documentation

	Get the name and description of the Law object.

	Returns

	Return the name and description of the law as its documentation

	Return type

	str

	
enforce() → None[source]

	Execute all registered rule. If rule_can_abort config option
is set to True, all the rules will be aborted and an exception
will be raised.

When the whole execution chain is finished, the changes will be
committed except the failed ones.

Note

Failed rules and their chain (excluding prerequisites) will be added
to the pull request description.

	Raises

	AbortLawError

	
property failed_rules

	Return the rules which did modifications and failed.

	Returns

	Return the failed rules

	Return type

	Union[Tuple[()], Tuple[Rule]]

	
get_execution_order() → List[Union[hammurabi.rules.base.Rule, hammurabi.preconditions.base.Precondition]][source]

	Get the execution order of the registered rules. The order will
contain the pipes and children as well.

This helper function is useful in debugging and information
gathering.

	Returns

	Return the execution order of the rules

	Return type

	List[Rule]

	
property passed_rules

	Return the rules which did modifications and not failed.

	Returns

	Return the passed rules

	Return type

	Tuple[Rule, ..]

	
property skipped_rules

	Return the rules which neither modified the code nor failed.

	Returns

	Return the skipped rules

	Return type

	Tuple[Rule, ..]

hammurabi.main module

	
class hammurabi.main.LoggingChoices(value)[source]

	Bases: str, enum.Enum

Logging choices for CLI settings.

	
DEBUG = 'DEBUG'

	

	
ERROR = 'ERROR'

	

	
INFO = 'INFO'

	

	
WARNING = 'WARNING'

	

	
hammurabi.main.enforce(ctx: typer.models.Context, dry_run: bool = <typer.models.OptionInfo object>, allow_push: bool = <typer.models.OptionInfo object>, report: bool = <typer.models.OptionInfo object>)[source]

	The enforce command executes the laws registered on the pillar. But the command
has other responsibilities too. It will make sure the execution report is generated
and controls if the changes are pushed to remote or not.

	
hammurabi.main.error_message(message: str, should_exit: bool = True, code: int = 1)[source]

	Print error message and exit the CLI application

	
hammurabi.main.main(ctx: typer.models.Context, cfg: pathlib.Path = <typer.models.OptionInfo object>, repository: str = <typer.models.OptionInfo object>, token: str = <typer.models.OptionInfo object>, log_level: hammurabi.main.LoggingChoices = <typer.models.OptionInfo object>)[source]

	Hammurabi is an extensible CLI tool responsible for enforcing user-defined rules on a git
repository.

Find more information at: https://hammurabi.readthedocs.io/latest/

	
hammurabi.main.print_message(message: str, color: str, bold: bool, should_exit: bool, code: int)[source]

	Print formatted message and exit if requested.

	
hammurabi.main.success_message(message: str)[source]

	Print error message and exit the CLI application

	
hammurabi.main.version()[source]

	Print hammurabi version.

hammurabi.mixins module

Mixins module contains helpers for both laws and rules. Usually this file
will contain Git commands related helpers. Also, this module contains the
extensions for several online git based VCS.

	
class hammurabi.mixins.GitHubMixin[source]

	Bases: hammurabi.mixins.GitMixin, hammurabi.mixins.PullRequestHelperMixin

Extending hammurabi.mixins.GitMixin to be able to open pull requests
on GitHub after changes are pushed to remote.

	
create_pull_request() → Optional[str][source]

	Create a PR on GitHub after the changes are pushed to remote. The pull
request details (repository, branch) are set by the project
configuration. The mapping of the details and configs:

	Detail

	Configuration

	repo

	repository (owner/repository format)

	base

	git_base_name

	branch

	git_branch_name

	Returns

	Return the open (and updated) or opened PR’s url

	Return type

	Optional[str]

	
class hammurabi.mixins.GitMixin[source]

	Bases: object

Simple mixin which contains all the common git commands which are needed
to push a change to an online VCS like GitHub or GitLab. This mixin could
be used by hammurabi.law.Law`s, :class:`hammurabi.rules.base or
any rules which can make modifications during its execution.

	
static checkout_branch() → None[source]

	Perform a simple git checkout, to not pollute the default branch and
use that branch for the pull request later. The branch name can be
changed in the config by setting the git_branch_name config option.

The following command is executed:

git checkout -b <branch name>

	
git_add(param: pathlib.Path) → None[source]

	Add file contents to the index.

	Parameters

	param (Path) – Path to add to the index

The following command is executed:

git add <path>

	
git_commit(message: str) → None[source]

	Commit the changes on the checked out branch.

	Parameters

	message (str) – Git commit message

The following command is executed:

git commit -m "<commit message>"

	
static git_diff(**kwargs) → List[str][source]

	Get the diff of files.

	Returns

	Returns the git diff command and its output

	Return type

	bool

The following command is executed

git diff [options]

	
git_remove(param: pathlib.Path) → None[source]

	Remove files from the working tree and from the index.

	Parameters

	param (Path) – Path to remove from the working tree and the index

The following command is executed:

git rm <path>

	
static push_changes() → bool[source]

	Push the changes with the given branch set by git_branch_name
config option to the remote origin.

The following command is executed:

git push origin <branch name>

	Returns

	Return whether the changes are pushed

	Return type

	bool

	
class hammurabi.mixins.PullRequestHelperMixin[source]

	Bases: object

Give helper classes for pull request related operations

	
generate_pull_request_body(pillar) → str[source]

	Generate the body of the pull request based on the registered laws and rules.
The pull request body is markdown formatted.

	Parameters

	pillar (hammurabi.pillar.Pillar) – Pillar configuration

	Returns

	Returns the generated pull request description

	Return type

	str

hammurabi.pillar module

Pillar module is responsible for handling the whole execution chain including
executing the registered laws, pushing the changes to the VCS and creating a
pull request. All the laws registered to the pillar will be executed in the
order of the registration.

	
class hammurabi.pillar.Pillar(reporter_class: Type[hammurabi.reporters.base.Reporter] = <class 'hammurabi.reporters.json.JsonReporter'>, notifications: Iterable[hammurabi.notifications.base.Notification] = ())[source]

	Bases: hammurabi.mixins.GitHubMixin

Pillar is responsible for the execution of the chain of laws and rules.

All the registered laws and rules can be retrieved using the laws and
rules properties, or if necessary single laws and rules can be accessed
using the resource’s name as a parameter for get_law or get_rule
methods.

As a final step, pillar will prepare its reporter for report generation.
For more information about reporters, check hammurabi.reporters.base.Reporter
and hammurabi.reporters.json.JsonReporter.

	Parameters

	reporter_class (Type[Reporter]) – The reporter class used for generating the reports

	
enforce()[source]

	Run all the registered laws and rules one by one. This method is responsible
for executing the registered laws, push changes to the git origin and open
the pull request.

This method glues together the lower level components and makes sure that the
execution of laws and rules can not be called more than once at the same time
for a match.

	
get_law(name: str) → hammurabi.law.Law[source]

	Get a law by its name. In case of no Laws are registered or
the law can not be found by its name, a StopIteration
exception will be raised.

	Parameters

	name (str) – Name of the law which will be used for the lookup

	Raises

	StopIteration exception if Law not found

	Returns

	Return the searched law

	Return type

	hammurabi.law.Law

	
get_rule(name: str) → hammurabi.rules.base.Rule[source]

	Get a registered rule (and its pipe/children) by the rule’s name.

This helper function is useful in debugging and information
gathering.

	Parameters

	name (str) – Name of the rule which will be used for the lookup

	Raises

	StopIteration exception if Rule not found

	Returns

	Return the rule in case of a match for the name

	Return type

	Rule

	
property laws

	Return the registered laws in order of the registration.

	
register(law: hammurabi.law.Law)[source]

	Register the given Law to the Pillar. The order of the registration
does not matter. The laws should never depend on each other.

	Parameters

	law (hammurabi.law.Law) – Initialized Law which should be registered

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create pyproject.toml",
>>> path=Path("./pyproject.toml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

The laws should never depend on each other, because the execution
may not happen in the same order the laws were registered. Instead,
organize the depending rules in one law to resolve any dependency
conflicts.

	
property rules

	Return all the registered laws’ rules.

Module contents

hammurabi.notifications package

Submodules

hammurabi.notifications.base module

Notifications are responsible for letting the end users/owners that a change
happened on a git repository. Notifications describes where to send the
notification but not responsible for delivering it. For example, you can use
an email notification method, but the notification method is not responsible
for handling emails and delivering the message.

	
class hammurabi.notifications.base.Notification(recipients: List[str], message_template: str)[source]

	Bases: abc.ABC

A git push notification which serves as a base for different kind
of notifications like Slack or E-mail notification.

	
abstract notify(message: str, changes_link: Optional[str]) → None[source]

	Handle sending the desired message to the recipients.

	Parameters

	
	message (str) – Message to send

	changes_link (Optional[str]) – Link to the list of changes

	Raise

	NotificationSendError if the notification cannot be delivered

	
send(changes_link: Optional[str]) → None[source]

	Notify the users/owners about a change on the git repository. In case change
link is provided, the user will be able to go directly checking the changes.

	Parameters

	changes_link (Optional[str]) – Link to the list of changes

hammurabi.notifications.slack module

Send notification to a slack channel when Hammurabi creates/updates a pull request.

	
class hammurabi.notifications.slack.SlackNotification(recipients: List[str], message_template: str)[source]

	Bases: hammurabi.notifications.base.Notification

Send slack notification through Slack webhooks.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsDirectoryExist, SlackNotification
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the dir if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsDirectoryExist(path=Path("other-dir"))
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar(notifications=[
>>> SlackNotification(
>>> recipients=["https://slack.webhook.url"],
>>> message_template="Dear team, the {repository} has new update.",
>>>)
>>>])
>>> pillar.register(example_law)

Warning

This notification requires the slack-notifications extra to be installed.

	
notify(message: str, changes_link: Optional[str]) → None[source]

	Handle notification send through Slack webhooks.

	Parameters

	
	message (str) – Message to send

	changes_link (Optional[str]) – Link to the list of changes

Module contents

hammurabi.preconditions package

Submodules

hammurabi.preconditions.attributes module

This module contains the definition of Preconditions which are related
to attributes of a file or directory.

	
class hammurabi.preconditions.attributes.HasMode(path: pathlib.Path, mode: int, **kwargs)[source]

	Bases: hammurabi.preconditions.base.Precondition

Check if the given file or directory has the required permissions/mode.

You can read more about the available modes at https://docs.python.org/3/library/stat.html.

Example usage:

>>> import stat
>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, HasMode
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml if owned by gabor",
>>> path=Path("./pyproject.toml"),
>>> new_name="gabor-pyproject.toml"
>>> preconditions=[
>>> HasMode(path=Path("scripts/run_unittests.sh"), mode=stat.S_IXOTH)
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	
	path (Path) – Input file’s path

	mode (str) – The desired mode to check

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given mode is set on the file or directory.

	Returns

	Returns True if the desired mode is set

	Return type

	bool

	
class hammurabi.preconditions.attributes.HasNoMode(path: pathlib.Path, mode: int, **kwargs)[source]

	Bases: hammurabi.preconditions.attributes.HasMode

Opposite of hammurabi.preconditions.attributes.HasMode.

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given mode is not set on the file or directory.

	Returns

	Returns True if the desired mode is not set

	Return type

	bool

	
class hammurabi.preconditions.attributes.IsNotOwnedBy(path: pathlib.Path, owner: str, **kwargs)[source]

	Bases: hammurabi.preconditions.attributes.IsOwnedBy

Opposite of hammurabi.preconditions.attributes.IsOwnedBy.

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the ownership does not meet the requirements.

	Returns

	Returns True if the owner matches

	Return type

	bool

	
class hammurabi.preconditions.attributes.IsOwnedBy(path: pathlib.Path, owner: str, **kwargs)[source]

	Bases: hammurabi.preconditions.base.Precondition

Check if the given file or directory has the required ownership.

To check only the user use owner="username". To check only the
group use owner=":group_name" (please note the colon :).
It is also possible to check both username and group at the same time
by using owner="username:group_name".

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsOwnedBy
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml if owned by gabor",
>>> path=Path("./pyproject.toml"),
>>> new_name="gabor-pyproject.toml"
>>> preconditions=[
>>> IsOwnedBy(path=Path("./pyproject.toml"), owner="gabor")
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	
	path (Path) – Input file’s path

	owner (str) – Owner user and/or group of the file/directory separated by colon

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the ownership meets the requirements.

	Returns

	Returns True if the owner matches

	Return type

	bool

hammurabi.preconditions.base module

This module contains the definition of Preconditions which describes what to do with
the received parameter and does the necessary changes. The preconditions are used to
enable developers skipping or enabling rules based on a set of conditions.

Warning

The precondition is for checking that a rule should or shouldn’t run, not for
breaking/aborting the execution. To indicate a precondition failure as an error
in the logs, create a precondition which raises an exception if the requirements
doesn’t match.

	
class hammurabi.preconditions.base.Precondition(name: Optional[str] = None, param: Optional[Any] = None)[source]

	Bases: hammurabi.rules.abstract.AbstractRule, abc.ABC

This class which describes the bare minimum and helper functions for Preconditions.
A precondition defines what and how should be checked/validated before executing a Rule.
Since preconditions are special rules, all the functions available what can be used for
hammurabi.rules.base.AbstractRule.

As said, preconditions are special from different angles. While this is not true for
Rules, Preconditions will always have a name, hence giving a name to a Precondition is not
necessary. In case no name given to a precondition, the name will be the name of the class
and ” precondition” suffix.

Example usage:

>>> import logging
>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Precondition
>>>
>>> class IsFileExist(Precondition):
>>> def __init__(self, path: Optional[Path] = None, **kwargs) -> None:
>>> super().__init__(param=path, **kwargs)
>>>
>>> def task(self) -> bool:
>>> return self.param and self.param.exists()

	Parameters

	
	name (Optional[str]) – Name of the rule which will be used for printing

	param (Any) – Input parameter of the rule will be used as self.param

	
execute() → bool[source]

	Execute the precondition.

	Raise

	AssertionError

	Returns

	None

	
made_changes

	

	
param

	

	
abstract task() → bool[source]

	Abstract method representing how a hammurabi.rules.base.Precondition.task()
must be parameterized. Any difference in the parameters or return type will result
in pylint/mypy errors.

To be able to use the power of pipe and children, return
something which can be generally used for other rules as in input.

	Returns

	Returns an output which can be used as an input for other rules

	Return type

	Any (usually same as self.param’s type)

hammurabi.preconditions.directories module

This module contains the definition of Preconditions which are related
to directories.

	
class hammurabi.preconditions.directories.IsDirectoryExist(path: pathlib.Path, **kwargs)[source]

	Bases: hammurabi.preconditions.base.Precondition

Check if the given directory exists.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsDirectoryExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the dir if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsDirectoryExist(path=Path("other-dir"))
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	path (Path) – Input directory’s path

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given directory exists.

	Returns

	Returns True if the directory exists

	Return type

	bool

	
class hammurabi.preconditions.directories.IsDirectoryNotExist(path: pathlib.Path, **kwargs)[source]

	Bases: hammurabi.preconditions.directories.IsDirectoryExist

Opposite of hammurabi.preconditions.directories.IsDirectoryExist.

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given directory not exists.

	Returns

	Returns True if the directory not exists

	Return type

	bool

hammurabi.preconditions.files module

Files preconditions module contains simple preconditions used for checking
file existence.

	
class hammurabi.preconditions.files.IsFileExist(path: pathlib.Path, **kwargs)[source]

	Bases: hammurabi.preconditions.base.Precondition

Check if the given file exists.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsFileExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the file if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsFileExist(path=Path("other-file"))
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	path (Path) – Input files’s path

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given file exists.

	Returns

	Returns True if the file exists

	Return type

	bool

	
class hammurabi.preconditions.files.IsFileNotExist(path: pathlib.Path, **kwargs)[source]

	Bases: hammurabi.preconditions.files.IsFileExist

Opposite of hammurabi.preconditions.files.IsFileExist.

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given file not exists.

	Returns

	Returns True if the file not exists

	Return type

	bool

hammurabi.preconditions.text module

This module contains the definition of Preconditions which are related
to general text files.

	
class hammurabi.preconditions.text.IsLineExist(path: pathlib.Path, criteria: str, **kwargs)[source]

	Bases: hammurabi.preconditions.base.Precondition

Check if the given line exists.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed, IsLineExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename the file if an other one exists",
>>> path=Path("old-name"),
>>> new_name="new-name",
>>> preconditions=[
>>> IsLineExist(path=Path("other-file"), criteria=r"^string=some-value$")
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	Parameters

	
	path (Path) – Input files’s path

	criteria (str) – Regexp of the desired line

Warning

When using criteria be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given line exists.

	Returns

	Returns True if the line exists

	Return type

	bool

	
class hammurabi.preconditions.text.IsLineNotExist(path: pathlib.Path, criteria: str, **kwargs)[source]

	Bases: hammurabi.preconditions.text.IsLineExist

Opposite of hammurabi.preconditions.text.IsLineExist.

	
made_changes

	

	
param

	

	
task() → bool[source]

	Check if the given line not exists.

	Returns

	Returns True if the line not exists

	Return type

	bool

Module contents

hammurabi.reporters package

Submodules

hammurabi.reporters.base module

This module contains the definition of Reporters which is responsible for
exposing the execution results in several formats.

	
class hammurabi.reporters.base.AdditionalData(*, started: str = '0001-01-01T00:00:00', finished: str = '0001-01-01T00:00:00', pull_request_url: str = '')[source]

	Bases: pydantic.main.BaseModel

Additional data which may not be set for every execution.

	
finished: str

	

	
pull_request_url: str

	

	
started: str

	

	
class hammurabi.reporters.base.LawItem(*, name: str, description: str)[source]

	Bases: pydantic.main.BaseModel

LawItem represents the basic summary of a low attached to a rule.

	
description: str

	

	
name: str

	

	
class hammurabi.reporters.base.Report(*, passed: List[hammurabi.reporters.base.RuleItem] = [], failed: List[hammurabi.reporters.base.RuleItem] = [], skipped: List[hammurabi.reporters.base.RuleItem] = [], additional_data: hammurabi.reporters.base.AdditionalData = AdditionalData(started='0001-01-01T00:00:00', finished='0001-01-01T00:00:00', pull_request_url=''))[source]

	Bases: pydantic.main.BaseModel

The report object which contains all the necessary and optional
data for the report will be generated.

	
additional_data: hammurabi.reporters.base.AdditionalData

	

	
failed: List[hammurabi.reporters.base.RuleItem]

	

	
passed: List[hammurabi.reporters.base.RuleItem]

	

	
skipped: List[hammurabi.reporters.base.RuleItem]

	

	
class hammurabi.reporters.base.Reporter(laws: List[hammurabi.law.Law])[source]

	Bases: abc.ABC

Abstract class which describes the bare minimum and helper functions for Reporters.
A reporter can generate different outputs from the results of the execution. Also,
reporters can be extended by additional data which may not contain data for every
execution like GitHub pull request url. The report file’s name set by report_name
config parameter.

Note

Reporters measures the execution time for the complete execution from checking
out the git branch until the pull request creation finished. Although the
completion time is measured, it is not detailed for the rules. At this moment
measuring execution time of rules is not planned.

Example usage:

>>> from hammurabi.reporters.base import Reporter
>>>
>>>
>>> class JsonReporter(Reporter):
>>> def report(self) -> str:
>>> return self._get_report().json()

	Parameters

	laws (Iterable[Law]) – Iterable Law objects which will be included to the report

	
abstract report() → Any[source]

	Do the actual reporting based on the report assembled.

	
class hammurabi.reporters.base.RuleItem(*, name: str, law: hammurabi.reporters.base.LawItem)[source]

	Bases: pydantic.main.BaseModel

RuleItem represents the registered rule and its status.

The rule (as normally) has the status of the execution which can be
passed, failed or skipped.

	
law: hammurabi.reporters.base.LawItem

	

	
name: str

	

hammurabi.reporters.json module

	
class hammurabi.reporters.json.JsonReporter(laws: List[hammurabi.law.Law])[source]

	Bases: hammurabi.reporters.base.Reporter

Generate reports in Json format and write into file. JsonReporter
is the default reporter of the pillar. The example below shows the
way how to replace a reporter which could base on the JsonReporter.

The report will be written into the configured report file. The report
file’s name set by report_name config parameter.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>> from my_company import MyJsonReporter
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> # override pillar's default JsonReporter reporter
>>> pillar = Pillar(reporter_class=MyJsonReporter)

	
report() → None[source]

	Do the actual reporting based on the report assembled in Json
format. The report will be written into the configured report file.

Module contents

hammurabi.rules package

Submodules

hammurabi.rules.abstract module

This module contains the definition of the AbstractRule which describes what is shared between
Rules and Preconditions.

	
class hammurabi.rules.abstract.AbstractRule(name: str, param: Any)[source]

	Bases: abc.ABC

Abstract class which describes the common behaviour for any kind of rule even
it is a hammurabi.rules.base.Rule or hammurabi.rules.base.Precondition

	Parameters

	
	name (str) – Name of the rule which will be used for printing

	param (Any) – Input parameter of the rule will be used as self.param

	
property description

	Return the description of the hammurabi.rules.base.Rule.task()
based on its docstring.

	Returns

	Stripped description of hammurabi.rules.base.Rule.task()

	Return type

	str

Note

As of this property returns the docstring of hammurabi.rules.base.Rule.task()
method, it worth to take care of its description when initialized.

	
property documentation

	Return the documentation of the rule based on its name, docstring and
the description of its task.

	Returns

	Concatenation of the rule’s name, docstring, and task description

	Return type

	str

Note

As of this method returns the name and docstring of the rule
it worth to take care of its name and description when initialized.

	
made_changes

	

	
property name

	Return the name of the hammurabi.rules.base.Rule.

	Returns

	The name of the given hammurabi.rules.base.Rule

	Return type

	str

Note

Name is defined as a separate property and not an attribute to
make sure we return a default value in those cases when we cannot
set the name due to an error.

	
param

	

	
post_task_hook()[source]

	Run code after the hammurabi.rules.base.Rule.task() has been
performed. To access the parameter passed to the rule, always use
self.param for hammurabi.rules.base.Rule.post_task_hook().

Note

This method can be used for execution of git commands
like git add, or double checking a modification made.

Warning

This method is not called in dry run mode.

	
pre_task_hook() → None[source]

	Run code before performing the hammurabi.rules.base.Rule.task().
To access the parameter passed to the rule, always use self.param
for hammurabi.rules.base.Rule.pre_task_hook().

Warning

This method is not called in dry run mode.

	
abstract task() → Any[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
or hammurabi.preconditions.base.Precondition.task() must be parameterized.
Any difference in the parameters will result in pylint/mypy errors.

To be able to use the power of pipe and children, return
something which can be generally used for other rules as in input.

	Returns

	Returns an output which can be used as an input for other rules

	Return type

	Any (usually same as self.param’s type)

Note

Although it is a good practice to return the same type for the output
that the input has, but this is not the case for “Boolean Rules”.
“Boolean Rules” should return True (or truthy) or False (or falsy) values.

	
validate(val: Any, cast_to: Optional[Any] = None, required=False) → Any[source]

	Validate and/or cast the given value to another type. In case the
existence of the value is required or casting failed an exception
will be raised corresponding to the failure.

	Parameters

	
	val (Any) – Value to validate

	cast_to (Any) – Type in which the value should be returned

	required (bool) – Check that the value is not falsy

	Raise

	ValueError if the given value is required but falsy

	Returns

	Returns the value in its original or casted type

	Return type

	Any

Example usage:

>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Rule
>>>
>>> class MyAwesomeRule(Rule):
>>> def __init__(self, name: str, param: Optional[Path] = None):
>>> self.param = self.validate(param, required=True)
>>>
>>> # Other method definitions ...
>>>

hammurabi.rules.attributes module

Attributes module contains file and directory attribute manipulation
rules which can be handy after creating new files or directories or
even when adding execute permissions for a script in the project.

	
class hammurabi.rules.attributes.ModeChanged(name: str, path: Optional[pathlib.Path] = None, new_value: Optional[int] = None, **kwargs)[source]

	Bases: hammurabi.rules.attributes.SingleAttributeRule

Change the mode of a file or directory.

Supported modes:

	Config option

	Description

	stat.S_ISUID

	Set user ID on execution.

	stat.S_ISGID

	Set group ID on execution.

	stat.S_ENFMT

	Record locking enforced.

	stat.S_ISVTX

	Save text image after execution.

	stat.S_IREAD

	Read by owner.

	stat.S_IWRITE

	Write by owner.

	stat.S_IEXEC

	Execute by owner.

	stat.S_IRWXU

	Read, write, and execute by owner.

	stat.S_IRUSR

	Read by owner.

	stat.S_IWUSR

	Write by owner.

	stat.S_IXUSR

	Execute by owner.

	stat.S_IRWXG

	Read, write, and execute by group.

	stat.S_IRGRP

	Read by group.

	stat.S_IWGRP

	Write by group.

	stat.S_IXGRP

	Execute by group.

	stat.S_IRWXO

	Read, write, and execute by others.

	stat.S_IROTH

	Read by others.

	stat.S_IWOTH

	Write by others.

	stat.S_IXOTH

	Execute by others.

Example usage:

>>> import stat
>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, ModeChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> ModeChanged(
>>> name="Update script must be executable",
>>> path=Path("./scripts/update.sh"),
>>> new_value=stat.S_IXGRP | stat.S_IXGRP | stat.S_IXOTH
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Change the mode of the given file or directory.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.attributes.OwnerChanged(name: str, path: Optional[pathlib.Path] = None, new_value: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.attributes.SingleAttributeRule

Change the ownership of a file or directory.

The new ownership of a file or directory can be set in three ways.
To set only the user use new_value="username". To set only the
group use new_value=":group_name" (please note the colon :).
It is also possible to set both username and group at the same time
by using new_value="username:group_name".

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OwnerChanged
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OwnerChanged(
>>> name="Change ownership of nginx config",
>>> path=Path("./nginx.conf"),
>>> new_value="www:web_admin"
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Change the ownership of the given file or directory.
None of the new username or group name can contain colons,
otherwise only the first two colon separated values will be
used as username and group name.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.attributes.SingleAttributeRule(name: str, path: Optional[pathlib.Path] = None, new_value: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Extend hammurabi.rules.base.Rule to handle attributes of a single
file or directory.

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Run code after the hammurabi.rules.base.Rule.task() has been
performed. To access the parameter passed to the rule, always use
self.param for hammurabi.rules.base.Rule.post_task_hook().

Note

This method can be used for execution of git commands
like git add, or double checking a modification made.

Warning

This method is not called in dry run mode.

	
abstract task() → Any[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
must be parameterized. Any difference in the parameters will result in
pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.base module

This module contains the definition of Rule which describes what to do with
the received parameter and does the necessary changes.

The Rule is an abstract class which describes all the required methods and
parameters, but it can be extended and customized easily by inheriting from
it. A good example for this kind of customization is hammurabi.rules.text.LineExists
which adds more parameters to hammurabi.rules.files.SingleFileRule which
inherits from hammurabi.rules.base.Rule.

	
class hammurabi.rules.base.Rule(name: str, param: Any, preconditions: Iterable[hammurabi.preconditions.base.Precondition] = (), pipe: Optional[Rule] = None, children: Iterable[Rule] = ())[source]

	Bases: hammurabi.rules.abstract.AbstractRule, abc.ABC

Abstract class which describes the bare minimum and helper functions for Rules.
A rule defines what and how should be executed. Since a rule can have piped and
children rules, the “parent” rule is responsible for those executions. This kind
of abstraction allows to run both piped and children rules sequentially in a given
order.

Example usage:

>>> from typing import Optional
>>> from pathlib import Path
>>> from hammurabi import Rule
>>> from hammurabi.mixins import GitMixin
>>>
>>> class SingleFileRule(Rule, GitMixin):
>>> def __init__(self, name: str, path: Optional[Path] = None, **kwargs) -> None:
>>> super().__init__(name, path, **kwargs)
>>>
>>> def post_task_hook(self):
>>> self.git_add(self.param)
>>>
>>> @abstractmethod
>>> def task(self) -> Path:
>>> pass

	Parameters

	
	name (str) – Name of the rule which will be used for printing

	param (Any) – Input parameter of the rule will be used as self.param

	preconditions (Iterable["Rule"]) – “Boolean Rules” which returns a truthy or falsy value

	pipe (Optional["Rule"]) – Pipe will be called when the rule is executed successfully

	children (Iterable["Rule"]) – Children will be executed after the piped rule if there is any

Warning

Preconditions can be used in several ways. The most common way is to run
“Boolean Rules” which takes a parameter and returns a truthy or falsy value.
In case of a falsy return, the precondition will fail and the rule will not be executed.

If any modification is done by any of the rules which are used as a
precondition, those changes will be committed.

	
property can_proceed

	Evaluate if a rule can continue its execution. In case the execution
is called with dry_run config option set to true, this method will
always return False to make sure not performing any changes. If
preconditions are set, those will be evaluated by this method.

	Returns

	Return with the result of evaluation

	Return type

	bool

Warning

hammurabi.rules.base.Rule.can_proceed() checks the result of
self.preconditions, which means the preconditions are executed.
Make sure that you are not doing any modifications within rules used
as preconditions, otherwise take extra attention for those rules.

	
execute(param: Optional[Any] = None)[source]

	Execute the rule’s task, its piped and children rules as well.

The execution order of task, piped rule and children rules
described in but not by hammurabi.rules.base.Rule.get_rule_chain().

	Parameters

	param (Optional[Any]) – Input parameter of the rule given by the user

	Raise

	AssertionError

	Returns

	None

Note

The input parameter can be optional because of the piped and
children rules which are receiving the output of its parent. In
this case the user is not able to set the param manually, since it
is calculated.

Warning

If self.can_proceed returns False the whole execution
will be stopped immediately and AssertionError will be
raised.

	
get_execution_order() → List[Union[Rule, hammurabi.preconditions.base.Precondition]][source]

	Same as hammurabi.rules.base.Rule.get_rule_chain() but
for the root rule.

	
get_rule_chain(rule: Rule) → List[Union[Rule, hammurabi.preconditions.base.Precondition]][source]

	Get the execution chain of the given rule. The execution
order is the following:

	task (current rule’s hammurabi.rules.base.Rule.task())

	Piped rule

	Children rules (in the order provided by the iterator used)

	Parameters

	rule (hammurabi.rules.base.Rule) – The rule which execution chain should be returned

	Returns

	Returns the list of rules in the order above

	Return type

	List[Rule]

	
made_changes

	

	
param

	

	
abstract task() → Any[source]

	See the documentation of hammurabi.rules.base.AbstractRule.task()

hammurabi.rules.common module

	
class hammurabi.rules.common.MultiplePathRule(name: str, paths: Optional[Iterable[pathlib.Path]] = (), **kwargs)[source]

	Bases: hammurabi.rules.base.Rule, hammurabi.mixins.GitMixin

Abstract class which extends hammurabi.rules.base.Rule to handle operations on
multiple files.

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Run code after the hammurabi.rules.base.Rule.task() has been
performed. To access the parameter passed to the rule, always use
self.param for hammurabi.rules.base.Rule.post_task_hook().

Note

This method can be used for execution of git commands
like git add, or double checking a modification made.

Warning

This method is not called in dry run mode.

	
abstract task() → Any[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
must be parameterized. Any difference in the parameters will result in
pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

	
class hammurabi.rules.common.SinglePathRule(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.base.Rule, hammurabi.mixins.GitMixin

Abstract class which extends hammurabi.rules.base.Rule to handle operations on a
single directory.

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Run code after the hammurabi.rules.base.Rule.task() has been
performed. To access the parameter passed to the rule, always use
self.param for hammurabi.rules.base.Rule.post_task_hook().

Note

This method can be used for execution of git commands
like git add, or double checking a modification made.

Warning

This method is not called in dry run mode.

	
abstract task() → Any[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
must be parameterized. Any difference in the parameters will result in
pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.dictionaries module

Extend hammurabi.rules.base.Rule to handle parsed content manipulations dictionaries.
Standalone these rules are not useful, but they are very handy when files should be manipulated
like Yaml or Json which will be parsed as dict.

These rules are intentionally not exported directly through hammurabi as it is done for Yaml or
Json rules. The reason, as it is mentioned above, these rules are not standalone rules. Also, it
is intentional that these rules are not represented in the documentation’s Rules section [https://hammurabi.readthedocs.io/en/latest/rules.html].

	
class hammurabi.rules.dictionaries.DictKeyExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.SinglePathDictParsedRule, abc.ABC

Ensure that the given key exists. If needed, the rule will create a key with the
given name, and optionally the specified value. In case the value is set, the value
will be assigned to the key. If no value is set, the key will be created with an empty
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar
>>> from hammurabi.rules.dictionaries import DictKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DictKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.dictionary"),
>>> key="stack",
>>> value="my-awesome-stack",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a
key before or after a match.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Ensure that the given key exists in the parsed file. If needed, create the
key with the given name, and optionally the specified value.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.dictionaries.DictKeyNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', loader: Callable[[Any], MutableMapping[str, Any]] = <class 'dict'>, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.SinglePathDictParsedRule, abc.ABC

Ensure that the given key not exists. If needed, the rule will remove a key with the
given name, including its value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar
>>> from hammurabi.rules.dictionaries import DictKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DictKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.dictionary"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Ensure that the given key does not exists in the parsed file.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.dictionaries.DictKeyRenamed(name: str, path: Optional[pathlib.Path] = None, key: str = '', new_name: str = '', **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.SinglePathDictParsedRule, abc.ABC

Ensure that the given key is renamed. In case the key can not be found,
a LookupError exception will be raised to stop the execution. The
execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar
>>> from hammurabi.rules.dictionaries import DictKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DictKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.dictionary"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Ensure that the given key is renamed. In case the key can not be found,
a LookupError exception will be raised to stop the execution. The
execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

	Raises

	LookupError raised if no key can be renamed or both the new and
old keys are in the config file

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.dictionaries.DictValueExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.SinglePathDictParsedRule, abc.ABC

Ensure that the given key has the expected value(s). In case the key cannot
be found, a LookupError exception will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For
more information please read the warning below.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar
>>> from hammurabi.rules.dictionaries import DictValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DictValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.dictionary"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> DictValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.dictionary"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> DictValueExists(
>>> name="Add support info",
>>> path=Path("./service.dictionary"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> DictValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.dictionary"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Since the value can be anything from None to a list of lists, and
rule piping passes the 1st argument (path) to the next rule the value
parameter can not be defined in __init__ before the path. Hence
the value parameter must have a default value. The default value is
set to None, which translates to the following:

Using the DictValueExists rule and not assigning value to value
parameter will set the matching key’s value to None` by default in
the document.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Ensure that the given key has the expected value(s). In case the key cannot
be found, a LookupError exception will be raised to stop the execution.

Warning

Since the value can be anything from None to a list of lists, and
rule piping passes the 1st argument (path) to the next rule the value
parameter can not be defined in __init__ before the path. Hence
the value parameter must have a default value. The default value is
set to None, which translates to the following:

Using the DictValueExists rule and not assigning value to value
parameter will set the matching key’s value to None` by default in
the document.

	Raises

	LookupError raised if no key can be renamed or both the new and
old keys are in the config file

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.dictionaries.DictValueNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.SinglePathDictParsedRule, abc.ABC

Ensure that the key has no value given. In case the key cannot be found,
a LookupError exception will be raised to stop the execution.

Compared to hammurabi.rules.dictionaries.DictValueExists, this rule can only
accept simple value for its value parameter. No list, dict, or
None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types)
value provided in the value parameter the value is:

	Set to None (if the key’s value’s type is not a dict or list)

	Removed from the list (if the key’s value’s type is a list)

	Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar
>>> from hammurabi.rules.dictionaries import DictValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DictValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.dictionary"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Ensure that the key has no value given. In case the key cannot be found,
a LookupError exception will be raised to stop the execution.

Based on the key’s value’s type if the value contains (or equals for simple types)
value provided in the value parameter the value is:
1. Set to None (if the key’s value’s type is not a dict or list)
2. Removed from the list (if the key’s value’s type is a list)
3. Removed from the dict (if the key’s value’s type is a dict)

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.dictionaries.SinglePathDictParsedRule(name: str, path: Optional[pathlib.Path] = None, key: str = '', loader: Callable[[Any], MutableMapping[str, Any]] = <class 'dict'>, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule, hammurabi.rules.mixins.SelectorMixin

Extend hammurabi.rules.base.Rule to handle parsed content
manipulations dictionaries. Standalone this rule is not useful, but
it is very handy when files should be manipulated like Yaml or
Json which will be parsed as dict. This rule ensures that the implementation
will be the same for these rules, so the maintenance cost and effort
is reduced.

Although this rule is not that powerful on its own, we would not
like to make it an abstract class like hammurabi.rules.base.Rule
because it can easily happen that at some point this rule will be
a standalone rule.

	
made_changes

	

	
param

	

	
pre_task_hook() → None[source]

	Parse the file for later use.

	
abstract task() → pathlib.Path[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
must be parameterized. Any difference in the parameters will result in
pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.directories module

Directories module contains directory specific manipulation rules. Please
note that those rules which can be used for files and directories are
located in other modules like hammurabi.rules.operations or
hammurabi.rules.attributes.

	
class hammurabi.rules.directories.DirectoryEmptied(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given directory’s content is removed. Please note the
difference between emptying a directory and recreating it. The latter
results in lost ACLs, permissions and modes.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryEmptied(
>>> name="Empty results directory",
>>> path=Path("./test-results")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Iterate through the entries of the given directory and remove them.
If an entry is a file simply remove it, otherwise remove the whole
subdirectory and its content.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.directories.DirectoryExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Ensure that a directory exists. If the directory does not exists,
make sure the directory is created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryExists(
>>> name="Create secrets directory",
>>> path=Path("./secrets")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Create the given directory if not exists.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.directories.DirectoryNotExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given directory does not exists. In case the directory
contains any file or sub-directory, those will be removed too.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, DirectoryNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> DirectoryNotExists(
>>> name="Remove unnecessary directory",
>>> path=Path("./temp")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Remove the given directory from git index.

	
task() → pathlib.Path[source]

	Remove the given directory.

	Returns

	Return the input path as an output

	Return type

	Path

hammurabi.rules.files module

Files module contains file specific manipulation rules. Please note that
those rules which can be used for files and directories are located in
other modules like hammurabi.rules.operations or
hammurabi.rules.attributes.

	
class hammurabi.rules.files.FileEmptied(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Remove the content of the given file, but keep the file. Please note the
difference between emptying a file and recreating it. The latter
results in lost ACLs, permissions and modes.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileEmptied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileEmptied(
>>> name="Empty the check log file",
>>> path=Path("/var/log/service/check.log")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Remove the content of the given file. If the file does not exists
this rule will create the file without content.

	Returns

	Return the emptied/created file’s path

	Return type

	Path

	
class hammurabi.rules.files.FileExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Ensure that a file exists. If the file does not exists,
make sure the file is created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileExists(
>>> name="Create service descriptor",
>>> path=Path("./service.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	If the match file not exists, create the file to make sure we
can manipulate it.

	Returns

	The created/existing file’s path

	Return type

	Path

	
class hammurabi.rules.files.FileNotExists(name: str, path: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given file does not exists. If the file exists
remove it, otherwise do nothing and return the original path.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FileNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FileNotExists(
>>> name="Remove unused file",
>>> path=Path("./debug.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Remove the given file from git index.

	
task() → pathlib.Path[source]

	Remove the given file if exists, otherwise do nothing and
return the original path.

	Returns

	Return the removed file’s path

	Return type

	Path

	
class hammurabi.rules.files.FilesExist(name: str, paths: Optional[Iterable[pathlib.Path]] = (), **kwargs)[source]

	Bases: hammurabi.rules.common.MultiplePathRule

Ensure that all files exists. If the files does not exists,
make sure the files are created.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesExist(
>>> name="Create test files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → Iterable[pathlib.Path][source]

	If the match files not exist, create the files to make sure we
can manipulate them.

	Returns

	The created/existing files’ path

	Return type

	Iterable[Path]

	
class hammurabi.rules.files.FilesNotExist(name: str, paths: Optional[Iterable[pathlib.Path]] = (), **kwargs)[source]

	Bases: hammurabi.rules.common.MultiplePathRule

Ensure that the given files does not exist. If the files exist
remove them, otherwise do nothing and return the original paths.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, FilesNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> FilesNotExist(
>>> name="Remove several files",
>>> paths=[
>>> Path("./file_1"),
>>> Path("./file_2"),
>>> Path("./file_3"),
>>>]
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Remove the given files from git index.

	
task() → Iterable[pathlib.Path][source]

	Remove all existing files.

	Returns

	Return the removed files’ paths

	Return type

	Iterable[Path]

hammurabi.rules.ini module

Ini module is an extension for text rules tailor made for .ini/.cfg files.
The main difference lies in the way it works. First, the .ini/.cfg file is
parsed, then the modifications are made on the already parsed file.

	
class hammurabi.rules.ini.OptionRenamed(name: str, path: Optional[pathlib.Path] = None, option: Optional[str] = None, new_name: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that an option of a section is renamed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionRenamed(
>>> name="Rename an option",
>>> path=Path("./config.ini"),
>>> section="my_section",
>>> option="typo",
>>> new_name="correct",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Rename an option of a section. In case a section can not be
found, a LookupError exception will be raised to stop the execution.
The execution must be stopped at this point, because if dependant rules
will fail otherwise.

	Raises

	LookupError raised if no section found or both the old and new
option names are found

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.ini.OptionsExist(name: str, path: Optional[pathlib.Path] = None, options: Iterable[Tuple[str, Any]] = None, force_value: bool = False, **kwargs)[source]

	Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that the given config option exists. If needed, the rule will create
a config option with the given value. In case the force_value parameter is
set to True, the original values will be replaced by the give ones.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionsExist(
>>> name="Ensure options are changed",
>>> path=Path("./config.ini"),
>>> section="fetching",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>> force_value=True,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

Warning

When using the force_value parameter, please note that all the existing
option values will be replaced by those set in options parameter.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Remove one or more option from a section. In case a section can not be
found, a LookupError exception will be raised to stop the execution.
The execution must be stopped at this point, because if dependant rules
will fail otherwise.

	Raises

	LookupError raised if no section can be renamed

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.ini.OptionsNotExist(name: str, path: Optional[pathlib.Path] = None, options: Iterable[str] = (), **kwargs)[source]

	Bases: hammurabi.rules.ini.SingleConfigFileRule

Remove one or more option from a section.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, OptionsNotExist
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> OptionsNotExist(
>>> name="Ensure options are removed",
>>> path=Path("./config.ini"),
>>> section="invalid",
>>> options=(
>>> "remove",
>>> "me",
>>> "please",
>>>)
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Remove one or more option from a section. In case a section can not be
found, a LookupError exception will be raised to stop the execution.
The execution must be stopped at this point, because if dependant rules
will fail otherwise.

	Raises

	LookupError raised if no section can be renamed

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.ini.SectionExists(name: str, path: Optional[pathlib.Path] = None, match: Optional[str] = None, options: Iterable[Tuple[str, Any]] = (), add_after: bool = True, **kwargs)[source]

	Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that the given config section exists. If needed, the rule will create
a config section with the given name, and optionally the specified options. In
case options are set, the config options will be assigned to that config sections.

Similarly to hammurabi.rules.text.LineExists, this rule is able to add a
section before or after a match section. The limitation compared to LineExists
is that the SectionExists rule is only able to add the new entry exactly before
or after its match.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionExists(
>>> name="Ensure section exists",
>>> path=Path("./config.ini"),
>>> section="polling",
>>> match="add_after_me",
>>> options=(
>>> ("interval", "2s"),
>>> ("abort_on_error", True),
>>>),
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

Warning

When using match be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

Warning

When options parameter is set, make sure you are using an iterable tuple.
The option keys must be strings, but there is no limitation for the value. It can
be set to anything what the parser can handle. For more information on the parser,
please visit the documentation of configupdater [https://configupdater.readthedocs.io/en/latest/].

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Ensure that the given config section exists. If needed, create a config section with
the given name, and optionally the specified options.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.ini.SectionNotExists(name: str, path: Optional[pathlib.Path] = None, section: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.ini.SingleConfigFileRule

Make sure that the given file not contains the specified line. When a section
removed, all the options belonging to it will be removed too.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionNotExists(
>>> name="Ensure section removed",
>>> path=Path("./config.ini"),
>>> section="invalid",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Remove the given section including its options from the config file.

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.ini.SectionRenamed(name: str, path: Optional[pathlib.Path] = None, new_name: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.ini.SingleConfigFileRule

Ensure that a section is renamed. None of its options will be changed.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, SectionRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> SectionRenamed(
>>> name="Ensure section renamed",
>>> path=Path("./config.ini"),
>>> section="polling",
>>> new_name="fetching",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the ini extra to be installed.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Rename the given section to a new name. None of its options will be
changed. In case a section can not be found, a LookupError exception
will be raised to stop the execution. The execution must be stopped at
this point, because if other rules depending on the rename they will fail
otherwise.

	Raises

	LookupError if we can not decide or can not find what should be renamed

	Returns

	Return the input path as an output

	Return type

	Path

	
class hammurabi.rules.ini.SingleConfigFileRule(name: str, path: Optional[pathlib.Path] = None, section: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Extend hammurabi.rules.base.Rule to handle parsed content
manipulations on a single file.

Warning

This rule requires the ini extra to be installed.

	
made_changes

	

	
param

	

	
pre_task_hook() → None[source]

	Parse the configuration file for later use.

	
abstract task() → Any[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
must be parameterized. Any difference in the parameters will result in
pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.json module

This module adds Json file support. Json module is an extension for text rules
tailor made for .json files. The main difference lies in the way it works.
First, the .json file is parsed, then the modifications are made on the
already parsed file.

	
class hammurabi.rules.json.JsonKeyExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictKeyExists, hammurabi.rules.json.SingleJsonFileRule

Ensure that the given key exists. If needed, the rule will create a key with the
given name, and optionally the specified value. In case the value is set, the value
will be assigned to the key. If no value is set, the key will be created with an empty
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.json"),
>>> key="stack",
>>> value="my-awesome-stack",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a
key before or after a match.

	
made_changes

	

	
param

	

	
class hammurabi.rules.json.JsonKeyNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictKeyNotExists, hammurabi.rules.json.SingleJsonFileRule

Ensure that the given key not exists. If needed, the rule will remove a key with the
given name, including its value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.json"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
class hammurabi.rules.json.JsonKeyRenamed(name: str, path: Optional[pathlib.Path] = None, key: str = '', new_name: str = '', **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictKeyRenamed, hammurabi.rules.json.SingleJsonFileRule

Ensure that the given key is renamed. In case the key can not be found,
a LookupError exception will be raised to stop the execution. The
execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.json"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
class hammurabi.rules.json.JsonValueExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictValueExists, hammurabi.rules.json.SingleJsonFileRule

Ensure that the given key has the expected value(s). In case the key cannot
be found, a LookupError exception will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For
more information please read the warning below.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.json"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> JsonValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.json"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> JsonValueExists(
>>> name="Add support info",
>>> path=Path("./service.json"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> JsonValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.json"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

Since the value can be anything from None to a list of lists, and
rule piping passes the 1st argument (path) to the next rule the value
parameter can not be defined in __init__ before the path. Hence
the value parameter must have a default value. The default value is
set to None, which translates to the following:

Using the JsonValueExists rule and not assigning value to value
parameter will set the matching key’s value to None` by default in
the document.

	
made_changes

	

	
param

	

	
class hammurabi.rules.json.JsonValueNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictValueNotExists, hammurabi.rules.json.SingleJsonFileRule

Ensure that the key has no value given. In case the key cannot be found,
a LookupError exception will be raised to stop the execution.

Compared to hammurabi.rules.json.JsonValueExists, this rule can only
accept simple value for its value parameter. No list, dict, or
None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types)
value provided in the value parameter the value is:

	Set to None (if the key’s value’s type is not a dict or list)

	Removed from the list (if the key’s value’s type is a list)

	Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, JsonValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> JsonValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.json"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
class hammurabi.rules.json.SingleJsonFileRule(name: str, path: Optional[pathlib.Path] = None, key: str = '', **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.SinglePathDictParsedRule

Extend hammurabi.rules.dictionaries.SinglePathDictParsedRule
to handle parsed content manipulations on a single Json file.

	
made_changes

	

	
param

	

	
abstract task() → pathlib.Path[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
must be parameterized. Any difference in the parameters will result in
pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

hammurabi.rules.mixins module

	
class hammurabi.rules.mixins.SelectorMixin[source]

	Bases: object

This mixin contains the helper function to get a value from dict by
a css selector like selector path. (.example.path.to.key)

	
get_by_selector(data: Any, key_path: Union[str, List[str]]) → Dict[str, Any][source]

	Get a key’s value by a selector and traverse the path.

	Parameters

	
	data (hammurabi.rules.mixins.Any) – The loaded Yaml data into dict

	key_path (Union[str, List[str]]) – Path to the key in a selector format
(.path.to.the.key or ["path", "to", "the", "key"])

	Returns

	Return the value belonging to the selector

	Return type

	hammurabi.rules.mixins.Any

	
set_by_selector(loaded_data: Any, key_path: Union[str, List[str]], value: Union[None, list, dict, str, int, float], delete: bool = False) → Any[source]

	Set a value by the key selector and traverse the path.

	Parameters

	
	loaded_data (hammurabi.rules.mixins.Any) – The loaded Yaml data into dict

	key_path (Union[str, List[str]]) – Path to the key in a selector format
(.path.to.the.key or ["path", "to", "the", "key"])

	value (Union[None, list, dict, str, int, float]) – The value set for the key

	delete (bool) – Indicate if the key should be deleted

	Returns

	The modified Yaml data

	Return type

	hammurabi.rules.mixins.Any

hammurabi.rules.operations module

Operations module contains common file/directory operation which can be
handy when need to move, rename or copy files.

	
class hammurabi.rules.operations.Copied(name: str, path: Optional[pathlib.Path] = None, destination: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Ensure that the given file or directory is copied to the new path.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Copied
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Copied(
>>> name="Create backup file",
>>> path=Path("./service.yaml"),
>>> destination=Path("./service.bkp.yaml")
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Add the destination and not the original path.

	
task() → pathlib.Path[source]

	Copy the given file or directory to a new place.

	Returns

	Returns the path of the copied file/directory

	Return type

	Path

	
class hammurabi.rules.operations.Moved(name: str, path: Optional[pathlib.Path] = None, destination: Optional[pathlib.Path] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Move a file or directory from “A” to “B”.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Moved
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Moved(
>>> name="Move pyproject.toml to its place",
>>> path=Path("/tmp/generated/pyproject.toml.template"),
>>> destination=Path("./pyproject.toml"), # Notice the rename!
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Add both the new and old git objects.

	
task() → pathlib.Path[source]

	Move the given path to the destination. In case the file got a
new name when destination is provided, the file/directory will
be moved to its new place with its new name.

	Returns

	Returns the new destination of the file/directory

	Return type

	Path

	
class hammurabi.rules.operations.Renamed(name: str, path: Optional[pathlib.Path] = None, new_name: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.operations.Moved

This rule is a shortcut for hammurabi.rules.operations.Moved.
Instead of destination path a new name is required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, Renamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> Renamed(
>>> name="Rename pyproject.toml.bkp",
>>> path=Path("/tmp/generated/pyproject.toml.bkp"),
>>> new_name="pyproject.toml",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

hammurabi.rules.templates module

Templates module contains rules which are capable to create a new
file based on a Jinja2 template by rendering it.

	
class hammurabi.rules.templates.TemplateRendered(name: str, template: Optional[pathlib.Path] = None, destination: Optional[pathlib.Path] = None, context: Optional[Dict[str, Any]] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Render a file from a Jinja2 template. In case the destination
file not exists, this rule will create it, otherwise the file will
be overridden.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, TemplateRendered
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> TemplateRendered(
>>> name="Create gunicorn config from template",
>>> template=Path("/tmp/templates/gunicorn.conf.py"),
>>> destination=Path("./gunicorn.conf.py"),
>>> context={
>>> "keepalive": 65
>>> },
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the templating extra to be installed.

	
made_changes

	

	
param

	

	
post_task_hook()[source]

	Add the destination and not the original path.

	
task() → pathlib.Path[source]

	Render a file from a Jinja2 template. In case the destination
file not exists, this rule will create it, otherwise the file will
be overridden.

	Returns

	Returns the path of the rendered file

	Return type

	Path

hammurabi.rules.text module

Text module contains simple but powerful general file content manipulations.
Combined with other simple rules like hammurabi.rules.files.FileExists
or hammurabi.rules.attributes.ModeChanged almost anything can be
achieved. Although any file’s content can be changed using these rules, for
common file formats like ini, yaml or json dedicated rules are
created.

	
class hammurabi.rules.text.LineExists(name: str, path: Optional[pathlib.Path] = None, text: Optional[str] = None, match: Optional[str] = None, position: int = 1, respect_indentation: bool = True, ensure_trailing_newline: bool = False, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Make sure that the given file contains the required line. This rule is
capable for inserting the expected text before or after the unique match
text respecting the indentation of its context.

The default behaviour is to insert the required text exactly after the
match line, and respect its indentation. Please note that text``and
``match parameters are required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineExists, IsLineNotExist
>>>
>>> gunicorn_config = Path("./gunicorn.conf.py")
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineExists(
>>> name="Extend gunicorn config",
>>> path=gunicorn_config,
>>> text="keepalive = 65",
>>> match=r"^bind.*",
>>> preconditions=[
>>> IsLineNotExist(path=gunicorn_config, criteria=r"^keepalive.*")
>>>]
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

When using match be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

Note

The indentation of the match text will be extracted by a simple
regular expression. If a more complex regexp is required, please
inherit from this class.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Make sure that the given file contains the required line. This rule is
capable for inserting the expected rule before or after the unique match
text respecting the indentation of its context.

	Raises

	LookupError

	Returns

	Returns the path of the modified file

	Return type

	Path

	
class hammurabi.rules.text.LineNotExists(name: str, path: Optional[pathlib.Path] = None, text: Optional[str] = None, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Make sure that the given file not contains the specified line.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineNotExists(
>>> name="Remove keepalive",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Make sure that the given file not contains the specified line.

	Returns

	Returns the path of the modified file

	Return type

	Path

	
class hammurabi.rules.text.LineReplaced(name: str, path: Optional[pathlib.Path] = None, text: Optional[str] = None, match: Optional[str] = None, respect_indentation: bool = True, **kwargs)[source]

	Bases: hammurabi.rules.common.SinglePathRule

Make sure that the given text is replaced in the given file.

The default behaviour is to replace the required text with the
exact same indentation that the “match” line has. This behaviour
can be turned off by setting the respect_indentation parameter
to False. Please note that text and match parameters are
required.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, LineReplaced
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> LineReplaced(
>>> name="Replace typo using regex",
>>> path=Path("./gunicorn.conf.py"),
>>> text="keepalive = 65",
>>> match=r"^kepalive.*",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The indentation of the text will be extracted by a simple
regular expression. If a more complex regexp is required, please
inherit from this class.

Warning

When using match be aware that partial matches will be recognized
as well. This means you must be as strict with regular expressions as
it is needed. Example of a partial match:

>>> import re
>>> pattern = re.compile(r"apple")
>>> text = "appletree"
>>> pattern.match(text).group()
>>> 'apple'

Warning

This rule will replace all the matching lines in the given file.
Make sure the given match regular expression is tested before
the rule used against production code.

	
made_changes

	

	
param

	

	
task() → pathlib.Path[source]

	Make sure that the given text is replaced in the given file.

	Raises

	LookupError if we can not decide or can not find what should be replaced

	Returns

	Returns the path of the modified file

	Return type

	Path

hammurabi.rules.yaml module

This module adds Yaml file support. Yaml module is an extension for text rules
tailor made for .yaml/.yml files. The main difference lies in the way it works.
First, the .yaml/.yml file is parsed, then the modifications are made on the
already parsed file.

	
class hammurabi.rules.yaml.SingleDocumentYamlFileRule(name: str, path: Optional[pathlib.Path] = None, key: str = '', **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.SinglePathDictParsedRule

Extend hammurabi.rules.dictionaries.SinglePathDictParsedRule
to handle parsed content manipulations on a single Yaml file.

Warning

This rule requires the yaml extra to be installed.

	
made_changes

	

	
param

	

	
abstract task() → pathlib.Path[source]

	Abstract method representing how a hammurabi.rules.base.Rule.task()
must be parameterized. Any difference in the parameters will result in
pylint/mypy errors.

For more details please check hammurabi.rules.base.Rule.task().

	
class hammurabi.rules.yaml.YamlKeyExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictKeyExists, hammurabi.rules.yaml.SingleDocumentYamlFileRule

Ensure that the given key exists. If needed, the rule will create a key with the
given name, and optionally the specified value. In case the value is set, the value
will be assigned to the key. If no value is set, the key will be created with an empty
value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlKeyExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlKeyExists(
>>> name="Ensure service descriptor has stack",
>>> path=Path("./service.yaml"),
>>> key="stack",
>>> value="my-awesome-stack",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

This rule requires the yaml extra to be installed.

Warning

Compared to hammurabi.rules.text.LineExists, this rule is NOT able to add a
key before or after a match.

	
made_changes

	

	
param

	

	
class hammurabi.rules.yaml.YamlKeyNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictKeyNotExists, hammurabi.rules.yaml.SingleDocumentYamlFileRule

Ensure that the given key not exists. If needed, the rule will remove a key with the
given name, including its value.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlKeyNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlKeyNotExists(
>>> name="Ensure outdated_key is removed",
>>> path=Path("./service.yaml"),
>>> key="outdated_key",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the yaml extra to be installed.

	
made_changes

	

	
param

	

	
class hammurabi.rules.yaml.YamlKeyRenamed(name: str, path: Optional[pathlib.Path] = None, key: str = '', new_name: str = '', **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictKeyRenamed, hammurabi.rules.yaml.SingleDocumentYamlFileRule

Ensure that the given key is renamed. In case the key can not be found,
a LookupError exception will be raised to stop the execution. The
execution must be stopped at this point, because if other rules depending
on the rename they will fail otherwise.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlKeyRenamed
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlKeyRenamed(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.depends_on",
>>> value="dependencies",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the yaml extra to be installed.

	
made_changes

	

	
param

	

	
class hammurabi.rules.yaml.YamlValueExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[None, list, dict, str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictValueExists, hammurabi.rules.yaml.SingleDocumentYamlFileRule

Ensure that the given key has the expected value(s). In case the key cannot
be found, a LookupError exception will be raised to stop the execution.

This rule is special in the way that the value can be almost anything. For
more information please read the warning below.

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlValueExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlValueExists(
>>> name="Ensure service descriptor has dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value=["service1", "service2", "service3"],
>>>),
>>> # Or
>>> YamlValueExists(
>>> name="Add infra alerting to existing alerting components",
>>> path=Path("./service.yaml"),
>>> key="development.alerting",
>>> value={"infra": "#slack-channel-2"},
>>>),
>>> # Or
>>> YamlValueExists(
>>> name="Add support info",
>>> path=Path("./service.yaml"),
>>> key="development.supported",
>>> value=True,
>>>),
>>> # Or even
>>> YamlValueExists(
>>> name="Make sure that no development branch is set",
>>> path=Path("./service.yaml"),
>>> key="development.branch",
>>> value=None,
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Note

The difference between KeyExists and ValueExists rules is the approach and the
possibilities. While KeyExists is able to create values if provided, ValueExists
rules are not able to create keys if any of the missing. KeyExists value parameter
is a shorthand for creating a key and then adding a value to that key.

Warning

This rule requires the yaml extra to be installed.

Warning

Since the value can be anything from None to a list of lists, and
rule piping passes the 1st argument (path) to the next rule the value
parameter can not be defined in __init__ before the path. Hence
the value parameter must have a default value. The default value is
set to None, which translates to the following:

Using the YamlValueExists rule and not assigning value to value
parameter will set the matching key’s value to None` by default in
the document.

	
made_changes

	

	
param

	

	
class hammurabi.rules.yaml.YamlValueNotExists(name: str, path: Optional[pathlib.Path] = None, key: str = '', value: Union[str, int, float] = None, **kwargs)[source]

	Bases: hammurabi.rules.dictionaries.DictValueNotExists, hammurabi.rules.yaml.SingleDocumentYamlFileRule

Ensure that the key has no value given. In case the key cannot be found,
a LookupError exception will be raised to stop the execution.

Compared to hammurabi.rules.yaml.YamlValueExists, this rule can only
accept simple value for its value parameter. No list, dict, or
None can be used.

Based on the key’s value’s type if the value contains (or equals for simple types)
value provided in the value parameter the value is:

	Set to None (if the key’s value’s type is not a dict or list)

	Removed from the list (if the key’s value’s type is a list)

	Removed from the dict (if the key’s value’s type is a dict)

Example usage:

>>> from pathlib import Path
>>> from hammurabi import Law, Pillar, YamlValueNotExists
>>>
>>> example_law = Law(
>>> name="Name of the law",
>>> description="Well detailed description what this law does.",
>>> rules=(
>>> YamlValueNotExists(
>>> name="Remove decommissioned service from dependencies",
>>> path=Path("./service.yaml"),
>>> key="development.dependencies",
>>> value="service4",
>>>),
>>>)
>>>)
>>>
>>> pillar = Pillar()
>>> pillar.register(example_law)

Warning

This rule requires the yaml extra to be installed.

	
made_changes

	

	
param

	

Module contents

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/gabor-boros/hammurabi/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it. In case you added a
new Rule or Precondition, do not forget to add them to the docs as well.

Write Documentation

Hammurabi could always use more documentation, whether as part of the
official Hammurabi docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/gabor-boros/hammurabi/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up hammurabi for local development.

As step 0 make sure you have python 3.7+ and [https://pre-commit.com/](pre-commit) installed.

	Fork the hammurabi repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/hammurabi.git

	Install your local copy. Assuming you have poetry installed, this is how you set up your fork for local development:

$ cd hammurabi/
$ poetry install -E all

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass linters and the tests:

$ poetry shell
$ make lint
$ make test
$ pre-commit run --all-files

You will need make not just for executing the command, but to build (and test) the
documentations page as well.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.7 and 3.8.

Releasing

A reminder for the maintainers on how to release.
Make sure all your changes are committed (including an entry in CHANGELOG.rst).

After all, create a tag and a release on GitHub. The rest will be handled by
Travis.

Please follow this checklist for the release:

	Make sure that formatters are not complaining (make format returns 0)

	Make sure that linters are not complaining (make lint returns 0)

	Update CHANGELOG.rst - do not forget to update the unreleased link comparison

	Update version in pyproject.toml, CHANGELOG.rst and hammurabi/__init__.py

	Create a new Release on GitHub with a detailed release description based on
the previous releases.

Vulnerabilities

Note

Important! In case you found vulnerability or security issue in one of
the libraries we use or somewhere else in the code, please contact us
via e-mail at gabor.brs@gmail.com. Please do not use this channel for
support.

Reporting vulnerabilities

What is vulnerability?

Vulnerability is a cyber-security term that refers to a flaw in a system
that can leave it open to attack. The vulnerability may also refer to any
type of weakness in a computer system itself, in a set of procedures, or
in anything that leaves information security exposed to a threat.
- by techopedia [https://rethinkdb.com/docs/vulnerabilities/techopedia.com/definition/13484/vulnerability]

In case you found a vulnerability

In case you found vulnerability or security issue in one of the libraries
we use or somewhere else in the code, please do not publish it, instead,
contact us via e-mail at gabor.brs@gmail.com. We will take the necessary
steps to fix the issue. We are handling the vulnerabilities privately.

To make report processing easier, please consider the following:

	Use clear and expressive subject

	Have a short, clear, and direct description including the details

	Include OWASP link, CVE references or links to other public advisories
and standards

	Add steps on how to reproduce the issue

	Describe your environment

	Attach screenshots if applicable

Note

This article is a pretty good resource on how to report vulnerabilities.

In case you have any further questions regarding vulnerability reporting,
feel free to open an issue [https://github.com/gabor-boros/hammurabi/issues] on GitHub.

Credits

Development Lead

	Gábor Boros (@gabor-boros [https://github.com/gabor-boros])

Maintainers

	László Üveges (@uvegla [https://github.com/uvegla])

Contributors

Special thanks to Péter Turi (@turip [https://github.com/turip]) for the initial idea.

Check the whole list of contributors here [https://github.com/gabor-boros/hammurabi/graphs/contributors].

CHANGELOG

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/], and this project adheres to
Semantic Versioning [https://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/gabor-boros/hammurabi/compare/v0.11.1...master]

Fixed

	Fix configupdater bump related issues

Changed

	Bump bandit to ^1.7.0

	Bump black to ^20.8b1

	Bump configupdater to ^2.0

	Bump coverage to ^5.5

	Bump flake8 to ^3.8.4

	Bump github3.py to ^2.0.0

	Bump GitPython to ^3.1.14

	Bump hypothesis to ^5.41.2

	Bump Jinja2 to ^2.11.3

	Bump mypy to ^0.790

	Bump pydantic to ^1.8.1

	Bump pylint to ^2.7.2

	Bump pytest to ^6.2.2

	Bump ruamel.yaml to ^0.16.13

	Bump slack-webhook to ^1.0.5

	Bump sphinx-rtd-theme to ^0.5.1

	Bump toml to ^0.10.2

	Bump typer to ^0.3.2

	Bump ujson to ^4.0.2

0.11.1 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.11.1] - 2020-10-20

Fixed

	Fix MRO issue when precondition names cannot be retrieved when exception occurs

Changed

	Bump hypothesis to 5.37.3

	Bump ujson to 4.0.1

	Bump mypy to 0.790

	Bump flake8 to 3.8.4

	Bump gitpython to 3.1.9

	Bump pytest to 6.1.0

	Bump more-itertools to 8.5.0

0.11.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.11.0] - 2020-09-19

Added

	Add TOML file support and adjust readme

	Log skipped imports on debug level

Fixed

	Allow documentation generation for rules which are depending on extra packages

	Update enforce command description

	Hypothesis test execution skips : character when running owner change test

	Fix failing pylint error W0707 in slack notification

	Fix empty committing issue when no staged files are present

	Fix some documentation highlight issues

Changed

	Rename all target to match as it shows the intention better

	Remove trailing “s” from preconditions starting with “Is”

	Extend the documentation of DirectoryNotExists

	Mention in the docs that match will use partial match if the regex is not specific enough

	Add László Üveges to maintainers

	Replace Travis CI with GitHub Actions

	Update the release process with the external documentation site

	Update requirements minimum version

	Rename all JSON rule to Json to keep naming convention

	Rename all YAML rule to Yaml to keep naming convention

	Clarify difference between Key- and ValueExists rules

	Bump gitpython to 3.1.8

	Bump hypothesis to 5.33.0

	Bump black to 20.8b1

	Bump typer to 0.3.2

	Bump pylint to 2.6.0

	Bump pytest to 6.0.2

	Bump ujson to 3.2.0

	Bump coverage to 5.3

	Bump pygments to 2.7.1

0.10.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.10.0] - 2020-08-14

Added

	Extended the the development installation instruction by adding pre-commit

	Add more tests for pillar

Fixed

	Set __version__ to the latest tag to fix documentation generation

Changed

	CI/CD now executes pre-commit run –all-files

	Rename LineReplaced’s target parameter to match to reduce confusion

	Finetune pytest configuration by using classes named *TestCase instead of Test*

	Replace click based CLI with a Typer based one

	Use latest for local documentation generation

	Update CONTRIBUTING.md regarding documentation config version bump

	Include main.py in test reports and add tests

Removed

	–rule-can-abort is not an option anymore for enforce command

	Drop get order command since it is not used at all

	Drop get laws command since it is not used at all

	Drop get law command since it is not used at all

	Drop get rules command since it is not used at all

	Drop get rule command since it is not used at all

	Drop describe law command since it is not used at all

	Drop describe rule command since it is not used at all

	Remove hypothesis test reporting statistics generation

0.9.1 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.9.1] - 2020-08-08

Fixed

	Quick fix for a flipped condition when using allow_push

0.9.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.9.0] - 2020-08-07

Added

	Add new allow_push option to config to be able to turn on/off pushing to remote

	Extend the documentation with the new allow_push option

	Add –push/–no-push option to enforce command to control allow_push from CLI

Changed

	Pull request won’t be opened if no changes were pushed to remote

	Bump ujson to 3.1.0

	Bump configupdater to 1.1.2

Fixed

	Fixed changelog hyperlinks

0.8.2 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.8.2] - 2020-07-31

Fixed

	GitHub API url is transformed to Pull Request URLs

	Fix import issues when importing a Rule which has a missing extras dependency

Changed

	Bump pydantic to 1.6.1

	Bump configupdater to 1.1.1

	Bump coverage to 5.2.1

	Bump pytest to 6.0.1

	Bump hypothesis to 5.21.0

0.8.1 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.8.1] - 2020-07-20

Fixed

	Fix GitHub API change caused issues when filtering opened PRs

0.8.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.8.0] - 2020-07-15

Added

	Extended the documentation with the new optional dependency install guide

Changed

	Make extra dependencies optional (introducing breaking changes)

	Simplify Slack notification sending and change its formatting to allow better customization

0.7.4 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.7.4] - 2020-07-14

Added

	Add git push notification hooks

	Add Slack notification

Changed

	Bump pydantic to 1.6

	Bump gitpython to 3.1.7

	Bump hypothesis to 5.19.2

	Bump coverage to 5.2

	Bump sphinx-rtd-theme to 0.5.0

	Bump mypy to 0.782

	Bump flake8 to 3.8.3

	Bump pylint to 2.5.3

	Bump ujson to 3.0.0

	Bump pyhocon to 0.3.55

0.7.3 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.7.3] - 2020-05-25

Fixed

	Fix updating existing pull request issue pt. 3

0.7.2 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.7.2] - 2020-05-25

Fixed

	Fix updating existing pull request issue pt. 2

0.7.1 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.7.1] - 2020-05-22

Fixed

	Fix recursive directory removal issue

	Fix updating existing pull request issue

	Fix wrong default value in config documentation

Changed

	Bump hypothesis to 5.15.1

	Bump toml to 0.10.1

	Bump flake8 to 3.8.1

	Bump pylint to 2.5.2

0.7.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.7.0] - 2020-04-28

Added

	Implement __repr and __str__ for Law, Rule and Precondition objects

	Add logging related configuration options to customize logging

	Add dictionary parsed rules as a base for YAML and JSON rules

	Extend the documentations by the new dictionary rules

	Add community discord link

Changed

	Unify log message styles

	Adjust logging levels

	Use dictionary parsed rules as a base for YAML and JSON rules

	Reduced the method complexity of DictValueExists and DictValueNotExists rules

	Reduced the method complexity of Rule execution

	Reduced the method complexity of Law execution

	Reduced the method complexity of LineExists task execution

	Reduced the method complexity of SectionExists task execution

	Improve LineExists rule to make sure text can be added at the end of file even the file has no trailing newline

	Bump click to 7.1.2

	Bump pylint to 2.5.0

	Bump pydantic to 1.5.1

	Bump hypothesis to 5.10.4

	Bump jinja2 to 2.11.2

	Bump coverage to 5.1

	Bump gitpython to 3.1.1

Removed

	Remove criteria fields since Hammurabi now supports preconditions and it breaks the API uniformity

0.6.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.6.0] - 2020-04-06

Added

	New precondition IsOwnedBy / IsNotOwnedBy

	New precondition HasMode / HasNoMode

	New precondition IsDirectoryExists / IsDirectoryNotExists

	New precondition IsFileExists / IsFileNotExists

	New precondition IsLineExists / IsLineNotExists

	Add preconditions for Law class

	Add JSON file support

Changed

	Added return value type hint to pre_task_hook

	_get_by_selector / _set_by_selector became public methods (get_by_selector / set_by_selector)

0.5.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.5.0] - 2020-03-31

Fixed

	Add untracked files as well to the index

Removed

	Remove lock file creation since it is useless

0.4.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.4.0] - 2020-03-31

Added

	Added Reporter and JSONReporter classes to be able to expose execution results

	Add new config option report_name to the available settings

	New exception type PreconditionFailedError indicating that the precondition failed and no need to raise an error

Changed

	Make sure children and pipe can be set at the same time

	Simplify yaml key rename logic

	SectionRenamed not raises error if old section name is not represented but the new one

	OptionRenamed not raises error if old option name is not represented but the new one

	LineReplaced not raises error if old line is not represented but the new one

	Remove redundant way of getting rules of a law (https://github.com/gabor-boros/hammurabi/issues/45)

	GitHub mixin now returns the URL of the open PR’s URL; if an existing PR found, that PR’s URL will be returned

	Pillar prepare its Reporter for report generation

	Pillar has a new argument to set the pillar’s reporter easily

	CLI’s enforce command now calls the Pillar’s prepared Reporter to do the report

	“No changes made by” messages now info logs instead of warnings

	Commit changes only if the Law has passing rules

	If PreconditionFailedError raised, do not log error messages, log a warning instead

	LineExists will not raise an exception if multiple targets found, instead it will select the last match as target

	Have better PR description formatting

Fixed

	Fixed a dictionary traversal issue regarding yaml file support

	Fixed “Failed Rules” formatting of PR description by removing \xa0 character

	Fixed no Rule name in PR description if the Law did not change anything issue

	Fixed nested rule indentation PR description markup

	Fixed an issue with LineReplaced, if the input file is empty, raise an exception

0.3.1 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.3.1] - 2020-03-26

Fixed

	Make sure the lost ini file fix is back lost by merge conflict resolution

0.3.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.3.0] - 2020-03-25

Added

	Add Yaml file support (https://github.com/gabor-boros/hammurabi/pull/24)

Changed

	Make sure SectionExists adds the section even if no target given (https://github.com/gabor-boros/hammurabi/pull/21)

	Apply PEP-561 (https://github.com/gabor-boros/hammurabi/pull/19)

Fixed

	Fixed an ini section rename issue (https://github.com/gabor-boros/hammurabi/pull/24)

Removed

	Updated CONTRIBUTING.rst to remove the outdated stub generation

0.2.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.2.0] - 2020-03-23

Added

	Render files from Jinja2 templates (TemplateRendered rule)

	Add new Precondition base class (https://github.com/gabor-boros/hammurabi/pull/9)

	Add Code of Conduct to meet community requirements (https://github.com/gabor-boros/hammurabi/pull/10)

	New section in the documentations for Rules and Preconditions (https://github.com/gabor-boros/hammurabi/pull/11)

	Collect failed rules for every law (Law.failed_rules) (https://github.com/gabor-boros/hammurabi/pull/13)

	Add chained rules to PR body (https://github.com/gabor-boros/hammurabi/pull/13)

	Add failed rules to PR body (https://github.com/gabor-boros/hammurabi/pull/13)

	Throw a warning when no GitHub client is initialized (https://github.com/gabor-boros/hammurabi/pull/13)

	Raise runtime error when no GitHub client is initialized, but PR creation called (https://github.com/gabor-boros/hammurabi/pull/13)

	Guess owner/repository based on the origin url of the working directory (https://github.com/gabor-boros/hammurabi/pull/13)

Changed

	Add stub formatting to Makefile’s stubs command

	Extract common methods of Precondition and Rule to a new AbstractRule class (https://github.com/gabor-boros/hammurabi/pull/9)

	Extended CONTRIBUTING guidelines to include a notice for adding Rules and Preconditions (https://github.com/gabor-boros/hammurabi/pull/11)

	Refactor package structure and extract preconditions to separate submodule (https://github.com/gabor-boros/hammurabi/pull/11)

	Pull request body generation moved to the common GitMixin class (https://github.com/gabor-boros/hammurabi/pull/13)

	Pillar will always create lock file in the working directory (https://github.com/gabor-boros/hammurabi/pull/13)

	Call expandvar and expanduser of configuration files (https://github.com/gabor-boros/hammurabi/pull/13)

	Hammurabi only works in the current working directory (https://github.com/gabor-boros/hammurabi/pull/13)

	Read settings (pyproject.toml) path from HAMMURABI_SETTINGS_PATH environment variable (https://github.com/gabor-boros/hammurabi/pull/13)

	Fix version handling in docs

Fixed

	Remove faulty author of git committing (https://github.com/gabor-boros/hammurabi/pull/13)

	Only attempt to create a PR if there is no PR from Hammurabi (https://github.com/gabor-boros/hammurabi/pull/13)

	Fix double committing issue (https://github.com/gabor-boros/hammurabi/pull/13)

	Fix committing of laws when nothing changed (https://github.com/gabor-boros/hammurabi/pull/13)

	Fixed several CLI arguments related issues (https://github.com/gabor-boros/hammurabi/pull/13)

	Fixed a typo in the Bug issue template of GitHub (https://github.com/gabor-boros/hammurabi/pull/13)

Removed

	Removed target directory setting from config and CLI (https://github.com/gabor-boros/hammurabi/pull/13)

0.1.2 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.1.2] - 2020-03-18

Changed

	Extended Makefile to generate stubs

	Extend documentation how to generate and update stubs

	Update how to release section of CONTRIBUTING.rst

0.1.1 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.1.1] - 2020-03-17

Changed

	Moved unreleased section of CHANGELOG to the top

	Updated changelog entries to contain links for release versions

	Updated CONTRIBUTING document to mention changelog links

	Refactored configuration handling (https://github.com/gabor-boros/hammurabi/pull/5)

Fixed

	Fixed wrong custom rule example in the README

	Smaller issues around git committing and pushing (https://github.com/gabor-boros/hammurabi/pull/5)

0.1.0 [https://github.com/gabor-boros/hammurabi/releases/tag/v0.1.0] - 2020-03-12

Added

	
	Basic file manipulations
	
	Create file

	Create files

	Remove file

	Remove files

	Empty file

	
	Basic directory manipulations
	
	Create directory

	Remove directory

	Empty directory

	
	Basic file and directory operations
	
	Change owner

	Change mode

	Move file or directory

	Copy file or directory

	Rename file or directory

	
	Plain text/general file manipulations
	
	Add line

	Remove line

	Replace line

	
	INI file specific manipulations
	
	Add section

	Remove section

	Rename section

	Add option

	Remove option

	Rename option

	
	Miscellaneous
	
	Initial documentation

	CI/CD integration

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hammurabi	

 	
 	
 hammurabi.config	

 	
 	
 hammurabi.exceptions	

 	
 	
 hammurabi.helpers	

 	
 	
 hammurabi.law	

 	
 	
 hammurabi.main	

 	
 	
 hammurabi.mixins	

 	
 	
 hammurabi.notifications	

 	
 	
 hammurabi.notifications.base	

 	
 	
 hammurabi.notifications.slack	

 	
 	
 hammurabi.pillar	

 	
 	
 hammurabi.preconditions	

 	
 	
 hammurabi.preconditions.attributes	

 	
 	
 hammurabi.preconditions.base	

 	
 	
 hammurabi.preconditions.directories	

 	
 	
 hammurabi.preconditions.files	

 	
 	
 hammurabi.preconditions.text	

 	
 	
 hammurabi.reporters	

 	
 	
 hammurabi.reporters.base	

 	
 	
 hammurabi.reporters.json	

 	
 	
 hammurabi.rules	

 	
 	
 hammurabi.rules.abstract	

 	
 	
 hammurabi.rules.attributes	

 	
 	
 hammurabi.rules.base	

 	
 	
 hammurabi.rules.common	

 	
 	
 hammurabi.rules.dictionaries	

 	
 	
 hammurabi.rules.directories	

 	
 	
 hammurabi.rules.files	

 	
 	
 hammurabi.rules.ini	

 	
 	
 hammurabi.rules.json	

 	
 	
 hammurabi.rules.mixins	

 	
 	
 hammurabi.rules.operations	

 	
 	
 hammurabi.rules.templates	

 	
 	
 hammurabi.rules.text	

 	
 	
 hammurabi.rules.yaml	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Y

A

 	
 	AbortLawError

 	AbstractRule (class in hammurabi.rules.abstract)

 	
 	additional_data (hammurabi.reporters.base.Report attribute)

 	AdditionalData (class in hammurabi.reporters.base)

 	allow_push (hammurabi.config.CommonSettings attribute)

C

 	
 	can_proceed() (hammurabi.law.Law property)

 	(hammurabi.rules.base.Rule property)

 	checkout_branch() (hammurabi.mixins.GitMixin static method)

 	commit() (hammurabi.law.Law method)

 	
 	CommonSettings (class in hammurabi.config)

 	CommonSettings.Config (class in hammurabi.config)

 	Config (class in hammurabi.config)

 	Copied (class in hammurabi.rules.operations)

 	create_pull_request() (hammurabi.mixins.GitHubMixin method)

D

 	
 	DEBUG (hammurabi.main.LoggingChoices attribute)

 	description (hammurabi.reporters.base.LawItem attribute)

 	description() (hammurabi.rules.abstract.AbstractRule property)

 	DictKeyExists (class in hammurabi.rules.dictionaries)

 	DictKeyNotExists (class in hammurabi.rules.dictionaries)

 	DictKeyRenamed (class in hammurabi.rules.dictionaries)

 	DictValueExists (class in hammurabi.rules.dictionaries)

 	
 	DictValueNotExists (class in hammurabi.rules.dictionaries)

 	DirectoryEmptied (class in hammurabi.rules.directories)

 	DirectoryExists (class in hammurabi.rules.directories)

 	DirectoryNotExists (class in hammurabi.rules.directories)

 	documentation() (hammurabi.law.Law property)

 	(hammurabi.rules.abstract.AbstractRule property)

 	dry_run (hammurabi.config.CommonSettings attribute)

E

 	
 	enforce() (hammurabi.law.Law method)

 	(hammurabi.pillar.Pillar method)

 	(in module hammurabi.main)

 	env_prefix (hammurabi.config.CommonSettings.Config attribute)

 	
 	ERROR (hammurabi.main.LoggingChoices attribute)

 	error_message() (in module hammurabi.main)

 	execute() (hammurabi.preconditions.base.Precondition method)

 	(hammurabi.rules.base.Rule method)

F

 	
 	failed (hammurabi.reporters.base.Report attribute)

 	failed_rules() (hammurabi.law.Law property)

 	FileEmptied (class in hammurabi.rules.files)

 	FileExists (class in hammurabi.rules.files)

 	
 	FileNotExists (class in hammurabi.rules.files)

 	FilesExist (class in hammurabi.rules.files)

 	FilesNotExist (class in hammurabi.rules.files)

 	finished (hammurabi.reporters.base.AdditionalData attribute)

 	full_strip() (in module hammurabi.helpers)

G

 	
 	generate_pull_request_body() (hammurabi.mixins.PullRequestHelperMixin method)

 	get_by_selector() (hammurabi.rules.mixins.SelectorMixin method)

 	get_execution_order() (hammurabi.law.Law method)

 	(hammurabi.rules.base.Rule method)

 	get_law() (hammurabi.pillar.Pillar method)

 	get_rule() (hammurabi.pillar.Pillar method)

 	get_rule_chain() (hammurabi.rules.base.Rule method)

 	git_add() (hammurabi.mixins.GitMixin method)

 	
 	git_base_name (hammurabi.config.CommonSettings attribute)

 	git_branch_name (hammurabi.config.CommonSettings attribute)

 	git_commit() (hammurabi.mixins.GitMixin method)

 	git_diff() (hammurabi.mixins.GitMixin static method)

 	git_remove() (hammurabi.mixins.GitMixin method)

 	github_token (hammurabi.config.TOMLSettings attribute)

 	GitHubMixin (class in hammurabi.mixins)

 	GitMixin (class in hammurabi.mixins)

H

 	
 	
 hammurabi

 	module

 	
 hammurabi.config

 	module

 	
 hammurabi.exceptions

 	module

 	
 hammurabi.helpers

 	module

 	
 hammurabi.law

 	module

 	
 hammurabi.main

 	module

 	
 hammurabi.mixins

 	module

 	
 hammurabi.notifications

 	module

 	
 hammurabi.notifications.base

 	module

 	
 hammurabi.notifications.slack

 	module

 	
 hammurabi.pillar

 	module

 	
 hammurabi.preconditions

 	module

 	
 hammurabi.preconditions.attributes

 	module

 	
 hammurabi.preconditions.base

 	module

 	
 hammurabi.preconditions.directories

 	module

 	
 hammurabi.preconditions.files

 	module

 	
 hammurabi.preconditions.text

 	module

 	
 hammurabi.reporters

 	module

 	
 	
 hammurabi.reporters.base

 	module

 	
 hammurabi.reporters.json

 	module

 	
 hammurabi.rules

 	module

 	
 hammurabi.rules.abstract

 	module

 	
 hammurabi.rules.attributes

 	module

 	
 hammurabi.rules.base

 	module

 	
 hammurabi.rules.common

 	module

 	
 hammurabi.rules.dictionaries

 	module

 	
 hammurabi.rules.directories

 	module

 	
 hammurabi.rules.files

 	module

 	
 hammurabi.rules.ini

 	module

 	
 hammurabi.rules.json

 	module

 	
 hammurabi.rules.mixins

 	module

 	
 hammurabi.rules.operations

 	module

 	
 hammurabi.rules.templates

 	module

 	
 hammurabi.rules.text

 	module

 	
 hammurabi.rules.yaml

 	module

 	HasMode (class in hammurabi.preconditions.attributes)

 	HasNoMode (class in hammurabi.preconditions.attributes)

I

 	
 	INFO (hammurabi.main.LoggingChoices attribute)

 	IsDirectoryExist (class in hammurabi.preconditions.directories)

 	IsDirectoryNotExist (class in hammurabi.preconditions.directories)

 	IsFileExist (class in hammurabi.preconditions.files)

 	
 	IsFileNotExist (class in hammurabi.preconditions.files)

 	IsLineExist (class in hammurabi.preconditions.text)

 	IsLineNotExist (class in hammurabi.preconditions.text)

 	IsNotOwnedBy (class in hammurabi.preconditions.attributes)

 	IsOwnedBy (class in hammurabi.preconditions.attributes)

J

 	
 	JsonKeyExists (class in hammurabi.rules.json)

 	JsonKeyNotExists (class in hammurabi.rules.json)

 	JsonKeyRenamed (class in hammurabi.rules.json)

 	
 	JsonReporter (class in hammurabi.reporters.json)

 	JsonValueExists (class in hammurabi.rules.json)

 	JsonValueNotExists (class in hammurabi.rules.json)

L

 	
 	Law (class in hammurabi.law)

 	law (hammurabi.reporters.base.RuleItem attribute)

 	LawItem (class in hammurabi.reporters.base)

 	laws() (hammurabi.pillar.Pillar property)

 	LineExists (class in hammurabi.rules.text)

 	LineNotExists (class in hammurabi.rules.text)

 	
 	LineReplaced (class in hammurabi.rules.text)

 	load() (hammurabi.config.Config method)

 	log_format (hammurabi.config.TOMLSettings attribute)

 	log_level (hammurabi.config.TOMLSettings attribute)

 	log_path (hammurabi.config.TOMLSettings attribute)

 	LoggingChoices (class in hammurabi.main)

M

 	
 	made_changes (hammurabi.preconditions.attributes.HasMode attribute)

 	(hammurabi.preconditions.attributes.HasNoMode attribute)

 	(hammurabi.preconditions.attributes.IsNotOwnedBy attribute)

 	(hammurabi.preconditions.attributes.IsOwnedBy attribute)

 	(hammurabi.preconditions.base.Precondition attribute)

 	(hammurabi.preconditions.directories.IsDirectoryExist attribute)

 	(hammurabi.preconditions.directories.IsDirectoryNotExist attribute)

 	(hammurabi.preconditions.files.IsFileExist attribute)

 	(hammurabi.preconditions.files.IsFileNotExist attribute)

 	(hammurabi.preconditions.text.IsLineExist attribute)

 	(hammurabi.preconditions.text.IsLineNotExist attribute)

 	(hammurabi.rules.abstract.AbstractRule attribute)

 	(hammurabi.rules.attributes.ModeChanged attribute)

 	(hammurabi.rules.attributes.OwnerChanged attribute)

 	(hammurabi.rules.attributes.SingleAttributeRule attribute)

 	(hammurabi.rules.base.Rule attribute)

 	(hammurabi.rules.common.MultiplePathRule attribute)

 	(hammurabi.rules.common.SinglePathRule attribute)

 	(hammurabi.rules.dictionaries.DictKeyExists attribute)

 	(hammurabi.rules.dictionaries.DictKeyNotExists attribute)

 	(hammurabi.rules.dictionaries.DictKeyRenamed attribute)

 	(hammurabi.rules.dictionaries.DictValueExists attribute)

 	(hammurabi.rules.dictionaries.DictValueNotExists attribute)

 	(hammurabi.rules.dictionaries.SinglePathDictParsedRule attribute)

 	(hammurabi.rules.directories.DirectoryEmptied attribute)

 	(hammurabi.rules.directories.DirectoryExists attribute)

 	(hammurabi.rules.directories.DirectoryNotExists attribute)

 	(hammurabi.rules.files.FileEmptied attribute)

 	(hammurabi.rules.files.FileExists attribute)

 	(hammurabi.rules.files.FileNotExists attribute)

 	(hammurabi.rules.files.FilesExist attribute)

 	(hammurabi.rules.files.FilesNotExist attribute)

 	(hammurabi.rules.ini.OptionRenamed attribute)

 	(hammurabi.rules.ini.OptionsExist attribute)

 	(hammurabi.rules.ini.OptionsNotExist attribute)

 	(hammurabi.rules.ini.SectionExists attribute)

 	(hammurabi.rules.ini.SectionNotExists attribute)

 	(hammurabi.rules.ini.SectionRenamed attribute)

 	(hammurabi.rules.ini.SingleConfigFileRule attribute)

 	(hammurabi.rules.json.JsonKeyExists attribute)

 	(hammurabi.rules.json.JsonKeyNotExists attribute)

 	(hammurabi.rules.json.JsonKeyRenamed attribute)

 	(hammurabi.rules.json.JsonValueExists attribute)

 	(hammurabi.rules.json.JsonValueNotExists attribute)

 	(hammurabi.rules.json.SingleJsonFileRule attribute)

 	(hammurabi.rules.operations.Copied attribute)

 	(hammurabi.rules.operations.Moved attribute)

 	(hammurabi.rules.operations.Renamed attribute)

 	(hammurabi.rules.templates.TemplateRendered attribute)

 	(hammurabi.rules.text.LineExists attribute)

 	(hammurabi.rules.text.LineNotExists attribute)

 	(hammurabi.rules.text.LineReplaced attribute)

 	(hammurabi.rules.yaml.SingleDocumentYamlFileRule attribute)

 	(hammurabi.rules.yaml.YamlKeyExists attribute)

 	(hammurabi.rules.yaml.YamlKeyNotExists attribute)

 	(hammurabi.rules.yaml.YamlKeyRenamed attribute)

 	(hammurabi.rules.yaml.YamlValueExists attribute)

 	(hammurabi.rules.yaml.YamlValueNotExists attribute)

 	
 	main() (in module hammurabi.main)

 	ModeChanged (class in hammurabi.rules.attributes)

 	
 module

 	hammurabi

 	hammurabi.config

 	hammurabi.exceptions

 	hammurabi.helpers

 	hammurabi.law

 	hammurabi.main

 	hammurabi.mixins

 	hammurabi.notifications

 	hammurabi.notifications.base

 	hammurabi.notifications.slack

 	hammurabi.pillar

 	hammurabi.preconditions

 	hammurabi.preconditions.attributes

 	hammurabi.preconditions.base

 	hammurabi.preconditions.directories

 	hammurabi.preconditions.files

 	hammurabi.preconditions.text

 	hammurabi.reporters

 	hammurabi.reporters.base

 	hammurabi.reporters.json

 	hammurabi.rules

 	hammurabi.rules.abstract

 	hammurabi.rules.attributes

 	hammurabi.rules.base

 	hammurabi.rules.common

 	hammurabi.rules.dictionaries

 	hammurabi.rules.directories

 	hammurabi.rules.files

 	hammurabi.rules.ini

 	hammurabi.rules.json

 	hammurabi.rules.mixins

 	hammurabi.rules.operations

 	hammurabi.rules.templates

 	hammurabi.rules.text

 	hammurabi.rules.yaml

 	Moved (class in hammurabi.rules.operations)

 	MultiplePathRule (class in hammurabi.rules.common)

N

 	
 	name (hammurabi.reporters.base.LawItem attribute)

 	(hammurabi.reporters.base.RuleItem attribute)

 	name() (hammurabi.rules.abstract.AbstractRule property)

 	
 	Notification (class in hammurabi.notifications.base)

 	NotificationSendError

 	notify() (hammurabi.notifications.base.Notification method)

 	(hammurabi.notifications.slack.SlackNotification method)

O

 	
 	OptionRenamed (class in hammurabi.rules.ini)

 	OptionsExist (class in hammurabi.rules.ini)

 	
 	OptionsNotExist (class in hammurabi.rules.ini)

 	OwnerChanged (class in hammurabi.rules.attributes)

P

 	
 	param (hammurabi.preconditions.attributes.HasMode attribute)

 	(hammurabi.preconditions.attributes.HasNoMode attribute)

 	(hammurabi.preconditions.attributes.IsNotOwnedBy attribute)

 	(hammurabi.preconditions.attributes.IsOwnedBy attribute)

 	(hammurabi.preconditions.base.Precondition attribute)

 	(hammurabi.preconditions.directories.IsDirectoryExist attribute)

 	(hammurabi.preconditions.directories.IsDirectoryNotExist attribute)

 	(hammurabi.preconditions.files.IsFileExist attribute)

 	(hammurabi.preconditions.files.IsFileNotExist attribute)

 	(hammurabi.preconditions.text.IsLineExist attribute)

 	(hammurabi.preconditions.text.IsLineNotExist attribute)

 	(hammurabi.rules.abstract.AbstractRule attribute)

 	(hammurabi.rules.attributes.ModeChanged attribute)

 	(hammurabi.rules.attributes.OwnerChanged attribute)

 	(hammurabi.rules.attributes.SingleAttributeRule attribute)

 	(hammurabi.rules.base.Rule attribute)

 	(hammurabi.rules.common.MultiplePathRule attribute)

 	(hammurabi.rules.common.SinglePathRule attribute)

 	(hammurabi.rules.dictionaries.DictKeyExists attribute)

 	(hammurabi.rules.dictionaries.DictKeyNotExists attribute)

 	(hammurabi.rules.dictionaries.DictKeyRenamed attribute)

 	(hammurabi.rules.dictionaries.DictValueExists attribute)

 	(hammurabi.rules.dictionaries.DictValueNotExists attribute)

 	(hammurabi.rules.dictionaries.SinglePathDictParsedRule attribute)

 	(hammurabi.rules.directories.DirectoryEmptied attribute)

 	(hammurabi.rules.directories.DirectoryExists attribute)

 	(hammurabi.rules.directories.DirectoryNotExists attribute)

 	(hammurabi.rules.files.FileEmptied attribute)

 	(hammurabi.rules.files.FileExists attribute)

 	(hammurabi.rules.files.FileNotExists attribute)

 	(hammurabi.rules.files.FilesExist attribute)

 	(hammurabi.rules.files.FilesNotExist attribute)

 	(hammurabi.rules.ini.OptionRenamed attribute)

 	(hammurabi.rules.ini.OptionsExist attribute)

 	(hammurabi.rules.ini.OptionsNotExist attribute)

 	(hammurabi.rules.ini.SectionExists attribute)

 	(hammurabi.rules.ini.SectionNotExists attribute)

 	(hammurabi.rules.ini.SectionRenamed attribute)

 	(hammurabi.rules.ini.SingleConfigFileRule attribute)

 	(hammurabi.rules.json.JsonKeyExists attribute)

 	(hammurabi.rules.json.JsonKeyNotExists attribute)

 	(hammurabi.rules.json.JsonKeyRenamed attribute)

 	(hammurabi.rules.json.JsonValueExists attribute)

 	(hammurabi.rules.json.JsonValueNotExists attribute)

 	(hammurabi.rules.json.SingleJsonFileRule attribute)

 	(hammurabi.rules.operations.Copied attribute)

 	(hammurabi.rules.operations.Moved attribute)

 	(hammurabi.rules.operations.Renamed attribute)

 	(hammurabi.rules.templates.TemplateRendered attribute)

 	(hammurabi.rules.text.LineExists attribute)

 	(hammurabi.rules.text.LineNotExists attribute)

 	(hammurabi.rules.text.LineReplaced attribute)

 	(hammurabi.rules.yaml.SingleDocumentYamlFileRule attribute)

 	(hammurabi.rules.yaml.YamlKeyExists attribute)

 	(hammurabi.rules.yaml.YamlKeyNotExists attribute)

 	(hammurabi.rules.yaml.YamlKeyRenamed attribute)

 	(hammurabi.rules.yaml.YamlValueExists attribute)

 	(hammurabi.rules.yaml.YamlValueNotExists attribute)

 	
 	passed (hammurabi.reporters.base.Report attribute)

 	passed_rules() (hammurabi.law.Law property)

 	Pillar (class in hammurabi.pillar)

 	pillar (hammurabi.config.Settings attribute)

 	pillar_config (hammurabi.config.TOMLSettings attribute)

 	pillar_name (hammurabi.config.TOMLSettings attribute)

 	post_task_hook() (hammurabi.rules.abstract.AbstractRule method)

 	(hammurabi.rules.attributes.SingleAttributeRule method)

 	(hammurabi.rules.common.MultiplePathRule method)

 	(hammurabi.rules.common.SinglePathRule method)

 	(hammurabi.rules.directories.DirectoryNotExists method)

 	(hammurabi.rules.files.FileNotExists method)

 	(hammurabi.rules.files.FilesNotExist method)

 	(hammurabi.rules.operations.Copied method)

 	(hammurabi.rules.operations.Moved method)

 	(hammurabi.rules.templates.TemplateRendered method)

 	pre_task_hook() (hammurabi.rules.abstract.AbstractRule method)

 	(hammurabi.rules.dictionaries.SinglePathDictParsedRule method)

 	(hammurabi.rules.ini.SingleConfigFileRule method)

 	Precondition (class in hammurabi.preconditions.base)

 	PreconditionFailedError

 	print_message() (in module hammurabi.main)

 	pull_request_url (hammurabi.reporters.base.AdditionalData attribute)

 	PullRequestHelperMixin (class in hammurabi.mixins)

 	push_changes() (hammurabi.mixins.GitMixin static method)

R

 	
 	register() (hammurabi.pillar.Pillar method)

 	Renamed (class in hammurabi.rules.operations)

 	Report (class in hammurabi.reporters.base)

 	report() (hammurabi.reporters.base.Reporter method)

 	(hammurabi.reporters.json.JsonReporter method)

 	report_name (hammurabi.config.CommonSettings attribute)

 	
 	Reporter (class in hammurabi.reporters.base)

 	repository (hammurabi.config.CommonSettings attribute)

 	Rule (class in hammurabi.rules.base)

 	rule_can_abort (hammurabi.config.CommonSettings attribute)

 	RuleItem (class in hammurabi.reporters.base)

 	rules() (hammurabi.pillar.Pillar property)

S

 	
 	SectionExists (class in hammurabi.rules.ini)

 	SectionNotExists (class in hammurabi.rules.ini)

 	SectionRenamed (class in hammurabi.rules.ini)

 	SelectorMixin (class in hammurabi.rules.mixins)

 	send() (hammurabi.notifications.base.Notification method)

 	set_by_selector() (hammurabi.rules.mixins.SelectorMixin method)

 	Settings (class in hammurabi.config)

 	SingleAttributeRule (class in hammurabi.rules.attributes)

 	SingleConfigFileRule (class in hammurabi.rules.ini)

 	
 	SingleDocumentYamlFileRule (class in hammurabi.rules.yaml)

 	SingleJsonFileRule (class in hammurabi.rules.json)

 	SinglePathDictParsedRule (class in hammurabi.rules.dictionaries)

 	SinglePathRule (class in hammurabi.rules.common)

 	skipped (hammurabi.reporters.base.Report attribute)

 	skipped_rules() (hammurabi.law.Law property)

 	SlackNotification (class in hammurabi.notifications.slack)

 	started (hammurabi.reporters.base.AdditionalData attribute)

 	success_message() (in module hammurabi.main)

T

 	
 	task() (hammurabi.preconditions.attributes.HasMode method)

 	(hammurabi.preconditions.attributes.HasNoMode method)

 	(hammurabi.preconditions.attributes.IsNotOwnedBy method)

 	(hammurabi.preconditions.attributes.IsOwnedBy method)

 	(hammurabi.preconditions.base.Precondition method)

 	(hammurabi.preconditions.directories.IsDirectoryExist method)

 	(hammurabi.preconditions.directories.IsDirectoryNotExist method)

 	(hammurabi.preconditions.files.IsFileExist method)

 	(hammurabi.preconditions.files.IsFileNotExist method)

 	(hammurabi.preconditions.text.IsLineExist method)

 	(hammurabi.preconditions.text.IsLineNotExist method)

 	(hammurabi.rules.abstract.AbstractRule method)

 	(hammurabi.rules.attributes.ModeChanged method)

 	(hammurabi.rules.attributes.OwnerChanged method)

 	(hammurabi.rules.attributes.SingleAttributeRule method)

 	(hammurabi.rules.base.Rule method)

 	(hammurabi.rules.common.MultiplePathRule method)

 	(hammurabi.rules.common.SinglePathRule method)

 	(hammurabi.rules.dictionaries.DictKeyExists method)

 	(hammurabi.rules.dictionaries.DictKeyNotExists method)

 	(hammurabi.rules.dictionaries.DictKeyRenamed method)

 	(hammurabi.rules.dictionaries.DictValueExists method)

 	(hammurabi.rules.dictionaries.DictValueNotExists method)

 	(hammurabi.rules.dictionaries.SinglePathDictParsedRule method)

 	(hammurabi.rules.directories.DirectoryEmptied method)

 	(hammurabi.rules.directories.DirectoryExists method)

 	(hammurabi.rules.directories.DirectoryNotExists method)

 	(hammurabi.rules.files.FileEmptied method)

 	(hammurabi.rules.files.FileExists method)

 	(hammurabi.rules.files.FileNotExists method)

 	(hammurabi.rules.files.FilesExist method)

 	(hammurabi.rules.files.FilesNotExist method)

 	(hammurabi.rules.ini.OptionRenamed method)

 	(hammurabi.rules.ini.OptionsExist method)

 	(hammurabi.rules.ini.OptionsNotExist method)

 	(hammurabi.rules.ini.SectionExists method)

 	(hammurabi.rules.ini.SectionNotExists method)

 	(hammurabi.rules.ini.SectionRenamed method)

 	(hammurabi.rules.ini.SingleConfigFileRule method)

 	(hammurabi.rules.json.SingleJsonFileRule method)

 	(hammurabi.rules.operations.Copied method)

 	(hammurabi.rules.operations.Moved method)

 	(hammurabi.rules.templates.TemplateRendered method)

 	(hammurabi.rules.text.LineExists method)

 	(hammurabi.rules.text.LineNotExists method)

 	(hammurabi.rules.text.LineReplaced method)

 	(hammurabi.rules.yaml.SingleDocumentYamlFileRule method)

 	
 	TemplateRendered (class in hammurabi.rules.templates)

 	TOMLSettings (class in hammurabi.config)

V

 	
 	validate() (hammurabi.rules.abstract.AbstractRule method)

 	
 	version() (in module hammurabi.main)

W

 	
 	WARNING (hammurabi.main.LoggingChoices attribute)

Y

 	
 	YamlKeyExists (class in hammurabi.rules.yaml)

 	YamlKeyNotExists (class in hammurabi.rules.yaml)

 	
 	YamlKeyRenamed (class in hammurabi.rules.yaml)

 	YamlValueExists (class in hammurabi.rules.yaml)

 	YamlValueNotExists (class in hammurabi.rules.yaml)

 All modules for which code is available

	hammurabi.config

	hammurabi.exceptions

	hammurabi.helpers

	hammurabi.law

	hammurabi.main

	hammurabi.mixins

	hammurabi.notifications.base

	hammurabi.notifications.slack

	hammurabi.pillar

	hammurabi.preconditions.attributes

	hammurabi.preconditions.base

	hammurabi.preconditions.directories

	hammurabi.preconditions.files

	hammurabi.preconditions.text

	hammurabi.reporters.base

	hammurabi.reporters.json

	hammurabi.rules.abstract

	hammurabi.rules.attributes

	hammurabi.rules.base

	hammurabi.rules.common

	hammurabi.rules.dictionaries

	hammurabi.rules.directories

	hammurabi.rules.files

	hammurabi.rules.ini

	hammurabi.rules.json

	hammurabi.rules.mixins

	hammurabi.rules.operations

	hammurabi.rules.templates

	hammurabi.rules.text

	hammurabi.rules.toml

	hammurabi.rules.yaml

 Source code for hammurabi.config

pylint: disable=too-few-public-methods

from importlib.util import module_from_spec, spec_from_file_location
import logging
from logging.handlers import WatchedFileHandler
import os
from pathlib import Path
import re
import sys
from typing import Any, Dict, Optional

from git import InvalidGitRepositoryError, Repo
from github3 import GitHub, login
from pydantic import BaseSettings
import toml

CLI only configuration
The CLI only configuration items are here, to keep the config at one place,
but these options not used at other places. Please keep them here and do not
create a CLI configuration
DEFAULT_GENERATE_REPORT = True

Other configuration
DEFAULT_ALLOW_PUSH: bool = True
DEFAULT_DRY_RUN: bool = False
DEFAULT_RULE_CAN_ABORT: bool = False
DEFAULT_GIT_BRANCH_NAME: str = "hammurabi"
DEFAULT_GIT_BASE_NAME: str = "master"
DEFAULT_REPOSITORY: str = ""
DEFAULT_REPORT_NAME: Path = Path("hammurabi_report.json")
DEFAULT_GITHUB_TOKEN: str = ""
DEFAULT_LOG_LEVEL: str = "INFO"
DEFAULT_LOG_PATH: Path = Path("./hammurabi.log")
DEFAULT_LOG_FORMAT: str = logging.BASIC_FORMAT
DEFAULT_PILLAR_CONFIG: Path = Path("pillar.conf.py")
DEFAULT_PILLAR_NAME: str = "pillar"
DEFAULT_PROJECT_CONFIG = "pyproject.toml"

[docs]class CommonSettings(BaseSettings):
 """
 Common settings which applies to both TOML and CLI
 configuration of Hammurabi.

 ``Pillar`` configuration is intentionally not listed since
 it is represented as a string in the TOML configuration, but
 used the parsed variable in the CLI configuration.
 """

 allow_push: bool = DEFAULT_ALLOW_PUSH
 dry_run: bool = DEFAULT_DRY_RUN
 rule_can_abort: bool = DEFAULT_RULE_CAN_ABORT
 git_branch_name: str = DEFAULT_GIT_BRANCH_NAME
 git_base_name: str = DEFAULT_GIT_BASE_NAME
 repository: str = DEFAULT_REPOSITORY
 report_name: Path = DEFAULT_REPORT_NAME

[docs] class Config:
 """
 BaseSettings' config describing how the settings will be handled.
 The given ``env_prefix`` will make sure that settings can be read from
 environment variables starting with ``HAMMURABI_``.
 """

 env_prefix = "hammurabi_"

[docs]class TOMLSettings(CommonSettings):
 """
 TOML Project configuration settings. Most of the fields
 are used to compose other configuration fields like
 ``github_token`` or ``pillar``.
 """

 github_token: str = DEFAULT_GITHUB_TOKEN
 log_level: str = DEFAULT_LOG_LEVEL
 log_path: Optional[Path] = DEFAULT_LOG_PATH
 log_format: str = DEFAULT_LOG_FORMAT
 pillar_config: Path = DEFAULT_PILLAR_CONFIG
 pillar_name: str = DEFAULT_PILLAR_NAME

[docs]class Settings(CommonSettings):
 """
 CLI related settings which are directly needed for the
 execution.
 """

 pillar: object = None

[docs]class Config:
 """
 Simple configuration object which used across Hammurabi.
 The :class:`Config` loads the given ``pyproject.toml`` according
 to PEP-518.

 .. warning::

 When trying to use GitHub based laws without an initialized GitHub
 client (or invalid token), a warning will be thrown at the beginning
 of the execution. In case a PR open is attempted, a ``RuntimeError``
 will be raised
 """

 def __init__(self) -> None:
 try:
 repo = Repo(self.__get_repo_path())
 except InvalidGitRepositoryError as exc:
 logging.error('"%s" is not a git repository', str(exc))
 repo = None

 self.repo: Repo = repo
 self.github: Optional[GitHub] = None
 self.settings: Settings = Settings()

 @staticmethod
 def __setup_logging(project_config: TOMLSettings) -> None:
 """
 Set the logging configuration of the root logger. The root logger is
 intentionally configured and it is not a mistake.

 :param project_config: Parsed TOMLSettings
 :type project_config: :class:`hammurabi.config.TOMLSettings`
 """

 logging.root.setLevel(project_config.log_level)
 formatter = logging.Formatter(project_config.log_format)

 stream_handler = logging.StreamHandler(sys.stdout)
 stream_handler.setFormatter(formatter)
 logging.root.addHandler(stream_handler)

 if project_config.log_path:
 file_handler = WatchedFileHandler(str(project_config.log_path))
 file_handler.setFormatter(formatter)
 logging.root.addHandler(file_handler)

 @staticmethod
 def __get_repo_path() -> Path:
 """
 Get repository path which is the current working directory.
 :return: Current working directory where Hammurabi is executed
 :rtype: Path
 """

 return Path(".").absolute()

 @staticmethod
 def __load_pyproject_toml(config_file: Path) -> TOMLSettings:
 """
 Load and parse the given ``pyproject.toml`` file.

 :param config_file: Path of the pyproject.toml file
 :type config_file: Path

 :return: Returns the parsed configuration
 :rtype: :class:`hammurabi.config.TOMLSettings`
 """

 return TOMLSettings(
 **toml.load(config_file).get("tool", {}).get("hammurabi", {})
)

 @staticmethod
 def __load_pillar_config(project_config: TOMLSettings) -> object:
 """
 Load ``pillar`` configuration based on the dotted style path in the
 ``pyproject.toml``, set by ``config`` configuration section.

 :param project_config: Parsed TOMLSettings
 :type project_config: :class:`hammurabi.config.TOMLSettings`

 :return: Returns the initialized :class:`hammurabi.pillar.Pillar`
 :rtype: :class:`pydantic.PyObject`
 """

 # Pillar configuration file
 pillar_config = project_config.pillar_config.expanduser()

 # Load the configuration from pillar config module to runtime
 spec = spec_from_file_location(
 pillar_config.name.replace(".py", ""), os.path.expandvars(pillar_config)
)

 module = module_from_spec(spec)
 spec.loader.exec_module(module) # type: ignore

 # Pillar config variable name
 return getattr(module, project_config.pillar_name)

 @staticmethod
 def __get_settings_value(parameter: str, fallback: Any) -> Any:
 """
 Get a specific setting parameter's value. This helper function
 will prefer environment variables over the fallback value, to
 keep the configuration order.

 :param parameter: Name of the setting
 :type parameter: str

 :param fallback: Value set in the configuration file
 :type fallback: Any

 :return: Returns the value read from environment or config file
 :rtype: Any
 """

 prefix = Settings.Config.env_prefix
 return os.environ.get(f"{prefix}{parameter}", fallback)

 def __merge_settings(self, loaded_settings: Dict[str, Any]) -> Settings:
 """
 Merge the configuration parsed from pyproject.toml and set by
 environment variables. To keep the configuration loading order,
 the environment settings will be used over those found in the
 TOML file.

 Config priority:

 1. CLI arguments (set by the CLI)
 2. ENV Variables (handled by pydantic settings)
 3. Config from file (handled by ``Config`` object)
 4. Default config (handled by pydantic settings)

 :param loaded_settings:
 :type loaded_settings: Dict[str, Any]
 """

 merge_result = {}

 for setting, value in loaded_settings.items():
 merge_result[setting] = self.__get_settings_value(setting, value)

 return Settings(**merge_result)

 def __get_fallback_repository(self) -> str:
 """
 Figure out the fallback owner/repository based on the remote url of the git repo.
 :return: Returns the owner/repository pair
 :rtype: str
 """

 repo_url: str = self.repo.remote().url

 if re.match(r"^http(s)?://", repo_url):
 repo = "/".join(repo_url.split("/")[-2:])
 else:
 repo = repo_url.split(":")[-1]

 return repo.replace(".git", "")

[docs] def load(self):
 """
 Handle configuration loading from project toml file and make sure
 the configuration are initialized and merged. Also, make sure that
 logging is set properly. Before loading the configuration, it is a
 requirement to set the ``HAMMURABI_SETTINGS_PATH`` as it will contain
 the path to the ``toml`` file what Hammurabi expects. This is needed
 for cases when the 3rd party rules would like to read the configuration
 of Hammurabi.

 ... note:

 The ``HAMMURABI_SETTINGS_PATH`` environment variable is set by the CLI
 by default, so there is no need to set if no 3rd party rules are used
 or those rules are not loading config.

 :raises: Runtime error if ``HAMMURABI_SETTINGS_PATH`` environment variable is not
 set or an invalid git repository was given.

 """

 if not self.repo:
 raise RuntimeError(f'"{self.__get_repo_path()}" is not a git repository.')

 settings_path = Path(
 os.path.expandvars(
 os.environ.get("HAMMURABI_SETTINGS_PATH", DEFAULT_PROJECT_CONFIG)
)
).expanduser()

 if not settings_path.exists():
 raise RuntimeError(
 f'Environment variable "HAMMURABI_SETTINGS_PATH" ({settings_path}) '
 "does not exists. Please make sure that you set the environment variable "
 "or CLI ``-c/--config`` flag properly. You must either define the"
 "environment variable or use hammurabi as a CLI tool."
)

 # Hammurabi CLI configuration file
 project_config = self.__load_pyproject_toml(settings_path)

 # Merge settings and make sure we keep config priority
 # Override the default settings by the merged ones
 self.settings = self.__merge_settings(
 {
 "pillar": self.__load_pillar_config(project_config),
 "git_base_name": project_config.git_base_name,
 "git_branch_name": project_config.git_branch_name,
 "dry_run": project_config.dry_run,
 "rule_can_abort": project_config.rule_can_abort,
 "report_name": project_config.report_name,
 }
)

 if not project_config.repository:
 self.settings.repository = self.__get_fallback_repository()

 # Set after self.settings is set since the following
 # may depend on settings read from environment or config file
 self.github = login(token=project_config.github_token)

 self.__setup_logging(project_config)

 logging.debug('Successfully loaded "%s"', settings_path)
 logging.debug('Successfully loaded "%s"', project_config.pillar_config)

 if not self.github:
 logging.warning("Missing or invalid GitHub token")

config = Config() # pylint: disable=invalid-name

 Source code for hammurabi.exceptions

[docs]class NotificationSendError(Exception):
 """
 Custom exception to make sure that own exception types are
 caught when sending notifications.
 """

[docs]class AbortLawError(Exception):
 """
 Custom exception to make sure that own exception types are
 caught by the Law's execution.
 """

[docs]class PreconditionFailedError(Exception):
 """
 Custom exception representing a failed precondition. In case a
 precondition failed, there is no need to raise an error and report
 the rule as a failure. The precondition is for checking that a rule
 should or shouldn't run; not for breaking the execution.
 """

 Source code for hammurabi.helpers

[docs]def full_strip(value: str) -> str:
 """
 Strip every line.
 """

 text = []

 for line in value.splitlines():
 stripped_line = line.strip()

 if stripped_line:
 text.append(stripped_line)

 return "\n".join(text)

 Source code for hammurabi.law

"""
This module contains the definition of Law which is responsible for
the execution of its registered Rules. Every Law can have multiple rules to execute.

In case a rule raises an exception the execution may abort and none of
the remaining rules will be executed neither pipes or children. An abort
can cause an inconsistent state or a dirty git branch. If ``rule_can_abort``
config is set to True, the whole execution of the :class:``hammurabi.pillar.Pillar``
will be aborted and the original exception will be re-raised.
"""

import logging
from typing import Iterable, List, Tuple, Union

from hammurabi.config import config
from hammurabi.exceptions import AbortLawError, PreconditionFailedError
from hammurabi.helpers import full_strip
from hammurabi.mixins import GitMixin
from hammurabi.rules.base import Precondition, Rule

[docs]class Law(GitMixin):
 """
 A Law is a collection of Rules which is responsible for the rule execution
 and git committing.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, FileExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> FileExists(
 >>> name="Create pyproject.toml",
 >>> path=Path("./pyproject.toml")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 description: str,
 rules: Iterable[Rule],
 preconditions: Iterable[Precondition] = (),
) -> None:
 """
 :param name: Name of the law
 :type name: str

 :param description: Detailed description what kind of rules are included
 :type description: str

 :param rules: List of those rules which should be included in the law
 :type rules: Iterable[Rule]
 """

 super().__init__()

 self.name = name.strip()
 self.description = full_strip(description)
 self.rules: Iterable[Rule] = tuple()
 self.preconditions = preconditions
 self._failed_rules: Tuple[Rule, ...] = tuple()

 for rule in rules:
 self.rules += (rule,)

 def __repr__(self) -> str:
 return (
 "Law("
 f'name="{self.name}", '
 f'description="{self.description}", '
 f"rules={self.rules}, "
 f"preconditions={self.preconditions})"
)

 def __str__(self) -> str:
 return f"{self.name} law"

 @property
 def passed_rules(self) -> Tuple[Rule, ...]:
 """
 Return the rules which did modifications and not failed.

 :return: Return the passed rules
 :rtype: Tuple[Rule, ...]
 """

 return tuple(r for r in self.rules if r.made_changes)

 @property
 def failed_rules(self) -> Tuple[Rule, ...]:
 """
 Return the rules which did modifications and failed.

 :return: Return the failed rules
 :rtype: Union[Tuple[()], Tuple[Rule]]
 """

 return self._failed_rules

 @property
 def skipped_rules(self) -> Tuple[Rule, ...]:
 """
 Return the rules which neither modified the code nor failed.

 :return: Return the skipped rules
 :rtype: Tuple[Rule, ...]
 """

 def is_skipped(rule) -> bool:
 """
 Return the evaluation if the rule is skipped or not.

 :return: Evaluation if the rule is skipped
 :rtype: bool
 """
 not_passed = rule not in self.passed_rules
 not_failed = rule not in self.failed_rules
 return not_passed and not_failed

 return tuple(r for r in self.rules if is_skipped(r))

 @property
 def documentation(self) -> str:
 """
 Get the name and description of the Law object.

 :return: Return the name and description of the law as its documentation
 :rtype: str
 """

 return f"{self.name}\n{self.description}"

 @property
 def can_proceed(self) -> bool:
 """
 Evaluate if the execution can be continued. If preconditions are set,
 those will be evaluated by this method.

 :return: Return with the result of evaluation
 :rtype: bool

 .. warning::

 :func:`hammurabi.rules.base.Rule.can_proceed` checks the result of
 ``self.preconditions``, which means the preconditions are executed.
 Make sure that you are not doing any modifications within rules used
 as preconditions, otherwise take extra attention for those rules.
 """

 logging.debug('Checking if "%s" can proceed with execution', self.name)
 return all([condition.execute() for condition in self.preconditions])

[docs] def get_execution_order(self) -> List[Union[Rule, Precondition]]:
 """
 Get the execution order of the registered rules. The order will
 contain the pipes and children as well.

 This helper function is useful in debugging and information
 gathering.

 :return: Return the execution order of the rules
 :rtype: List[Rule]
 """

 order: List[Union[Rule, Precondition]] = list()

 for rule in self.rules:
 order.extend(rule.get_execution_order())

 return order

[docs] def commit(self) -> None:
 """
 Commit the changes made by registered rules and add a
 meaningful commit message.

 Example commit message:

 .. code-block:: text

 Migrate to next generation project template
 * Create pyproject.toml
 * Add meta info from setup.py to pyproject.toml
 * Add existing dependencies
 * Remove requirements.txt
 * Remove setup.py
 """

 if not self.passed_rules:
 return

 order = self.get_execution_order()
 rules = [f"* {rule.name}" for rule in order if rule.made_changes]
 rules_commit_message = "\n".join(rules)
 self.git_commit(f"{self.documentation}\n\n{rules_commit_message}")

 @staticmethod
 def __execute_rule_chain(rule: Rule) -> None:
 """
 Execute the given rule. In case of an exception, the execution of rules
 will continue except the failing one. The failed rule's pipe and children
 will not be executed.

 :param rule: A registered rule
 :type rule: Rule

 :raises: ``AbortLawError``
 """

 try:
 rule.execute()
 except PreconditionFailedError:
 logging.warning(
 'Cancelling execution of "%s", the preconditions are not fulfilled',
 rule.name,
)
 except Exception as exc: # pylint: disable=broad-except
 logging.error('Execution of "%s" is aborted: %s', rule.name, str(exc))

 chained_rules = filter(
 lambda r: isinstance(r, Rule), rule.get_rule_chain(rule)
)

 for chain in chained_rules:
 logging.error('Due to errors "%s" is aborted', chain.name)

 raise AbortLawError(str(exc)) from exc

 def __execute_rule(self, rule: Rule) -> None:
 """
 Execute a rule registered for the law. In case of an exception the
 exception will be re-raised.
 """

 try:
 self.__execute_rule_chain(rule)
 except AbortLawError as exc:
 logging.error(str(exc))
 self._failed_rules += (rule,)

 if config.settings.rule_can_abort:
 raise exc

[docs] def enforce(self) -> None:
 """
 Execute all registered rule. If ``rule_can_abort`` config option
 is set to ``True``, all the rules will be aborted and an exception
 will be raised.

 When the whole execution chain is finished, the changes will be
 committed except the failed ones.

 .. note::

 Failed rules and their chain (excluding prerequisites) will be added
 to the pull request description.

 :raises: ``AbortLawError``
 """

 if not self.can_proceed:
 logging.warning(
 'Cancelling execution of "%s", the preconditions are not fulfilled',
 self.name,
)
 return

 logging.info('Executing law "%s"', self.name)

 for rule in self.rules:
 self.__execute_rule(rule)

 logging.info('Committing changes made by "%s"', self.name)
 self.commit()

 Source code for hammurabi.main

from enum import Enum
import logging
import os
from pathlib import Path
import sys

import github3
import typer

from hammurabi import Pillar, __version__
from hammurabi.config import (
 DEFAULT_ALLOW_PUSH,
 DEFAULT_DRY_RUN,
 DEFAULT_GENERATE_REPORT,
 DEFAULT_GITHUB_TOKEN,
 DEFAULT_LOG_LEVEL,
 DEFAULT_PROJECT_CONFIG,
 DEFAULT_REPOSITORY,
 config,
)

NON_ACTIONABLE_SUBCOMMANDS = ["version"]

[docs]class LoggingChoices(str, Enum):
 """
 Logging choices for CLI settings.
 """

 DEBUG = "DEBUG"
 INFO = "INFO"
 WARNING = "WARNING"
 ERROR = "ERROR"

app = typer.Typer()

[docs]def print_message(message: str, color: str, bold: bool, should_exit: bool, code: int):
 """
 Print formatted message and exit if requested.
 """

 typer.echo(typer.style(message, fg=color, bold=bold))

 if should_exit:
 sys.exit(code)

[docs]def error_message(message: str, should_exit: bool = True, code: int = 1):
 """
 Print error message and exit the CLI application
 """

 print_message(message, typer.colors.RED, True, should_exit, code)

[docs]def success_message(message: str):
 """
 Print error message and exit the CLI application
 """

 print_message(message, typer.colors.GREEN, True, False, 0)

[docs]@app.callback()
def main(
 ctx: typer.Context,
 cfg: Path = typer.Option(
 DEFAULT_PROJECT_CONFIG, "--config", "-c", help="Set the configuration file."
),
 repository: str = typer.Option(
 DEFAULT_REPOSITORY,
 help="Set the remote repository. Required format: owner/repository.",
),
 token: str = typer.Option(DEFAULT_GITHUB_TOKEN, help="Set github access token."),
 log_level: LoggingChoices = typer.Option(
 DEFAULT_LOG_LEVEL, help="Set logging level."
),
):
 """
 Hammurabi is an extensible CLI tool responsible for enforcing user-defined rules on a git
 repository.

 Find more information at: https://hammurabi.readthedocs.io/latest/
 """

 if ctx.invoked_subcommand in NON_ACTIONABLE_SUBCOMMANDS:
 return

 os.environ.setdefault("HAMMURABI_SETTINGS_PATH", str(cfg.expanduser()))

 try:
 # Reload the configuration
 config.load()
 success_message("Configuration loaded")
 except Exception as exc: # pylint: disable=broad-except
 error_message(f"Failed to load configuration: {str(exc)}")
 return

 if token != DEFAULT_GITHUB_TOKEN:
 config.github = github3.login(token=token)

 if repository != DEFAULT_REPOSITORY:
 config.settings.repository = repository

 if log_level != DEFAULT_LOG_LEVEL:
 logging.root.setLevel(log_level.value)

 ctx.ensure_object(dict)
 ctx.obj["config"] = config

[docs]@app.command(short_help="Print hammurabi version.")
def version():
 """
 Print hammurabi version.
 """

 typer.echo(__version__)

[docs]@app.command(short_help="Execute registered laws.")
def enforce(
 ctx: typer.Context,
 dry_run: bool = typer.Option(DEFAULT_DRY_RUN, help="Execute laws in dry run mode."),
 allow_push: bool = typer.Option(DEFAULT_ALLOW_PUSH, help="Push changes to remote."),
 report: bool = typer.Option(
 DEFAULT_GENERATE_REPORT, help="Generate execution report."
),
):
 """
 The `enforce` command executes the laws registered on the pillar. But the command
 has other responsibilities too. It will make sure the execution report is generated
 and controls if the changes are pushed to remote or not.
 """

 if allow_push != DEFAULT_ALLOW_PUSH:
 ctx.obj["config"].settings.allow_push = allow_push

 if dry_run != DEFAULT_DRY_RUN:
 ctx.obj["config"].settings.dry_run = dry_run

 pillar: Pillar = ctx.obj["config"].settings.pillar
 pillar.enforce()
 success_message("Finished successfully")

 if report:
 pillar.reporter.report()
 success_message("Report generated")

if __name__ == "__main__":
 app()

 Source code for hammurabi.mixins

"""
Mixins module contains helpers for both laws and rules. Usually this file
will contain Git commands related helpers. Also, this module contains the
extensions for several online git based VCS.
"""

import logging
from pathlib import Path
from typing import Iterable, Iterator, List, Optional, Union

from github3.pulls import ShortPullRequest # type: ignore
from github3.repos.repo import Repository # type: ignore

from hammurabi.config import config
from hammurabi.preconditions.base import Precondition
from hammurabi.rules.base import Rule

[docs]class GitMixin:
 """
 Simple mixin which contains all the common git commands which are needed
 to push a change to an online VCS like GitHub or GitLab. This mixin could
 be used by :class:`hammurabi.law.Law`s, :class:`hammurabi.rules.base` or
 any rules which can make modifications during its execution.
 """

 @staticmethod
 def __can_proceed() -> bool:
 """
 Determine if the next change can be done or not. For git related
 operations it is extremely important to abort or skip an execution
 if not needed.

 :return: Returns True if the next changes should be done
 :rtype: bool
 """

 is_dirty = config.repo and config.repo.is_dirty(untracked_files=True)
 return is_dirty and not config.settings.dry_run

[docs] @staticmethod
 def git_diff(**kwargs) -> List[str]:
 """
 Get the diff of files.

 :return: Returns the git diff command and its output
 :rtype: bool

 The following command is executed

 .. code-block:: shell

 git diff [options]
 """

 return config.repo.git.diff(**kwargs).split()

[docs] @staticmethod
 def checkout_branch() -> None:
 """
 Perform a simple git checkout, to not pollute the default branch and
 use that branch for the pull request later. The branch name can be
 changed in the config by setting the ``git_branch_name`` config option.

 The following command is executed:

 .. code-block:: shell

 git checkout -b <branch name>
 """

 if config.repo and not config.settings.dry_run:
 branch = config.settings.git_branch_name
 logging.info('Checkout branch "%s"', branch)
 config.repo.git.checkout("HEAD", B=branch) # pylint: disable=no-member

 # Only pull changes from origin when exists
 remote = config.repo.remote()
 if f"{remote.name}/{branch}" in [ref.name for ref in remote.refs]:
 config.repo.git.pull("origin", branch)

[docs] def git_add(self, param: Path) -> None:
 """
 Add file contents to the index.

 :param param: Path to add to the index
 :type param: Path

 The following command is executed:

 .. code-block:: shell

 git add <path>
 """

 if self.__can_proceed():
 logging.debug('Git add "%s"', str(param))
 config.repo.git.add(str(param)) # pylint: disable=no-member
 self.made_changes = True

[docs] def git_remove(self, param: Path) -> None:
 """
 Remove files from the working tree and from the index.

 :param param: Path to remove from the working tree and the index
 :type param: Path

 The following command is executed:

 .. code-block:: shell

 git rm <path>
 """

 if self.__can_proceed():
 logging.debug('Git remove "%s"', str(param))
 config.repo.index.remove(
 (str(param),), ignore_unmatch=True, r=True
) # pylint: disable=no-member
 self.made_changes = True

[docs] def git_commit(self, message: str) -> None:
 """
 Commit the changes on the checked out branch.

 :param message: Git commit message
 :type message: str

 The following command is executed:

 .. code-block:: shell

 git commit -m "<commit message>"
 """

 staged_files = self.git_diff(staged=True)

 if self.__can_proceed() and staged_files:
 config.repo.index.commit(message) # pylint: disable=no-member

[docs] @staticmethod
 def push_changes() -> bool:
 """
 Push the changes with the given branch set by ``git_branch_name``
 config option to the remote origin.

 The following command is executed:

 .. code-block:: shell

 git push origin <branch name>

 :return: Return whether the changes are pushed
 :rtype: bool
 """

 is_dry_run = config.settings.dry_run
 can_push = config.settings.allow_push

 if config.repo and not is_dry_run and can_push:
 branch: str = config.settings.git_branch_name
 logging.info("Pushing changes to %s", branch)
 config.repo.remotes.origin.push(branch) # pylint: disable=no-member
 return True

 return False

[docs]class PullRequestHelperMixin: # pylint: disable=too-few-public-methods
 """
 Give helper classes for pull request related operations
 """

 @staticmethod
 def __get_chained_rules(
 match: Rule, chain: List[Union[Rule, Precondition]]
) -> Iterable[Rule]:
 """
 Return all the chained rules excluding the root rule.

 :param match: The root Rule
 :type match: Rule

 :param chain: The whole chain
 :type chain: Iterable[Rule]

 :return: The filtered list of chained rules
 :rtype: Iterable[Rule]
 """

 rules = filter(lambda i: isinstance(i, Rule), chain)
 return filter(lambda r: r != match, rules) # type: ignore

 def __get_rules_body(self, rules: Iterable[Rule]) -> List[str]:
 """
 Generate the PR body's executed rules section for the root
 and chained rules excluding their preconditions.

 :param rules: List of passing of failed rules
 :type rules: Iterable[Rule]

 :return: Body of the PR section in a list format
 :rtype: List[str]
 """

 body: List[str] = list()

 for rule in rules:
 body.append(f"* {rule.name}")

 for chain in self.__get_chained_rules(rule, rule.get_rule_chain(rule)):
 body.append(f" * {chain.name}")

 return body

[docs] def generate_pull_request_body(self, pillar) -> str:
 """
 Generate the body of the pull request based on the registered laws and rules.
 The pull request body is markdown formatted.

 :param pillar: Pillar configuration
 :type pillar: :class:`hammurabi.pillar.Pillar`

 :return: Returns the generated pull request description
 :rtype: str
 """

 # NOTE: The parameter type can not be hinted, because of circular import,
 # we must fix this in the future releases.

 logging.debug("Generating pull request body")

 body: List[str] = [
 "## Description",
 "Below you can find the executed laws and information about them.",
]

 # Filter only those laws which has other rules than skipped ones.
 actionable_laws = filter(lambda l: l.passed_rules + l.failed_rules, pillar.laws)

 for law in actionable_laws:
 body.append(f"\n### {law.name}")
 body.append(law.description)

 if law.passed_rules:
 body.append("\n<details>")
 body.append("<summary>Passed rules</summary>\n")
 body.extend(self.__get_rules_body(law.passed_rules))
 body.append("</details>")

 if law.failed_rules:
 body.append("\n<details open>")
 body.append("<summary>Failed rules (manual fix needed)</summary>\n")
 body.extend(self.__get_rules_body(law.failed_rules))
 body.append("</details>")

 return "\n".join(body)

TODO: Move to a separate file as part of a new package if other VCS is supported
[docs]class GitHubMixin(GitMixin, PullRequestHelperMixin):
 """
 Extending :class:`hammurabi.mixins.GitMixin` to be able to open pull requests
 on GitHub after changes are pushed to remote.
 """

 @staticmethod
 def __pr_is_matching(pull_request: ShortPullRequest) -> bool:
 """
 Filter the PR details manually, since github3.py started to
 fail to retrieve the desired PRs based on the filter criteria.

 :param pull_request: Opened Pull Request on GitHub
 :type pull_request: ShortPullRequest

 :return: Return whether the PR is a hammurabi pr or not
 :rtype: bool
 """
 head_matching = pull_request.head.ref == config.settings.git_branch_name
 base_matching = pull_request.base.ref == config.settings.git_base_name
 return base_matching and head_matching

 @staticmethod
 def __get_pr_url(pr_api_url: str) -> str:
 """
 Get Pull Request id from the API url and return the UI version of that.

 :param pr_api_url: Pull Request API URL
 :type pr_api_url: str

 :return: UI version of the Pull Request
 :rtype: str
 """

 pull_request_id = pr_api_url.split("/")[-1]
 return f"https://github.com/{config.settings.repository}/pull/{pull_request_id}"

[docs] def create_pull_request(self) -> Optional[str]:
 """
 Create a PR on GitHub after the changes are pushed to remote. The pull
 request details (repository, branch) are set by the project
 configuration. The mapping of the details and configs:

 +------------+--------------------------------------+
 | Detail | Configuration |
 +============+======================================+
 | repo | repository (owner/repository format) |
 +------------+--------------------------------------+
 | base | git_base_name |
 +------------+--------------------------------------+
 | branch | git_branch_name |
 +------------+--------------------------------------+

 :return: Return the open (and updated) or opened PR's url
 :rtype: Optional[str]
 """

 if not config.github:
 raise RuntimeError(
 "The GitHub client is not initialized properly. Make sure that "
 "you set the GITHUB_TOKEN or HAMMURABI_GITHUB_TOKEN before execution. "
)

 if config.repo and not config.settings.dry_run:
 owner, repository = config.settings.repository.split("/")
 github_repo: Repository = config.github.repository(owner, repository)

 logging.info("Checking for opened pull request")

 pull_request_iterator: Iterator[ShortPullRequest] = filter(
 self.__pr_is_matching, github_repo.pull_requests(state="open")
)

 opened_pull_request: Optional[ShortPullRequest] = next(
 pull_request_iterator, None
)

 if not opened_pull_request:
 description = self.generate_pull_request_body(config.settings.pillar)

 logging.info("Opening pull request")
 response: ShortPullRequest = github_repo.create_pull(
 title="[hammurabi] Update to match the latest baseline",
 base=config.settings.git_base_name,
 head=config.settings.git_branch_name,
 body=description,
)

 return self.__get_pr_url(response.url)

 # Return the last known PR url, it should be one
 # anyways, so it is not an issue
 pull_request_url = self.__get_pr_url(opened_pull_request.url)
 logging.info("Found open pull request %s", pull_request_url)
 return pull_request_url

 # Although this return could be skipped, it is more
 # explicit to have it here
 return None

 Source code for hammurabi.pillar

"""
Pillar module is responsible for handling the whole execution chain including
executing the registered laws, pushing the changes to the VCS and creating a
pull request. All the laws registered to the pillar will be executed in the
order of the registration.
"""

from datetime import datetime
import logging
from typing import Iterable, List, Type

from hammurabi.law import Law
from hammurabi.mixins import GitHubMixin
from hammurabi.notifications.base import Notification
from hammurabi.reporters.base import Reporter
from hammurabi.reporters.json import JsonReporter
from hammurabi.rules.base import Rule

[docs]class Pillar(GitHubMixin):
 """
 Pillar is responsible for the execution of the chain of laws and rules.

 All the registered laws and rules can be retrieved using the ``laws`` and
 ``rules`` properties, or if necessary single laws and rules can be accessed
 using the resource's name as a parameter for ``get_law`` or ``get_rule``
 methods.

 As a final step, pillar will prepare its ``reporter`` for report generation.
 For more information about reporters, check :class:`hammurabi.reporters.base.Reporter`
 and :class:`hammurabi.reporters.json.JsonReporter`.

 :param reporter_class: The reporter class used for generating the reports
 :type reporter_class: Type[Reporter]
 """

 def __init__(
 self,
 reporter_class: Type[Reporter] = JsonReporter,
 notifications: Iterable[Notification] = (),
) -> None:
 self.__laws: List[Law] = list()

 self.notifications: Iterable[Notification] = notifications
 self.reporter: Reporter = reporter_class(list())

 @property
 def laws(self) -> List[Law]:
 """
 Return the registered laws in order of the registration.
 """

 return self.__laws

 @property
 def rules(self) -> List[Rule]:
 """
 Return all the registered laws' rules.
 """

 return [rule for law in self.laws for rule in law.rules]

[docs] def get_law(self, name: str) -> Law:
 """
 Get a law by its name. In case of no Laws are registered or
 the law can not be found by its name, a ``StopIteration``
 exception will be raised.

 :param name: Name of the law which will be used for the lookup
 :type name: str

 :raises: ``StopIteration`` exception if Law not found
 :return: Return the searched law
 :rtype: :class:`hammurabi.law.Law`
 """

 return next(filter(lambda l: l.name == name, self.laws))

[docs] def get_rule(self, name: str) -> Rule:
 """
 Get a registered rule (and its pipe/children) by the rule's name.

 This helper function is useful in debugging and information
 gathering.

 :param name: Name of the rule which will be used for the lookup
 :type name: str

 :raises: ``StopIteration`` exception if Rule not found
 :return: Return the rule in case of a match for the name
 :rtype: Rule
 """

 return next(filter(lambda r: r.name == name, self.rules))

[docs] def register(self, law: Law):
 """
 Register the given Law to the Pillar. The order of the registration
 does not matter. The laws should never depend on each other.

 :param law: Initialized Law which should be registered
 :type law: ``hammurabi.law.Law``

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, FileExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> FileExists(
 >>> name="Create pyproject.toml",
 >>> path=Path("./pyproject.toml")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 The laws should never depend on each other, because the execution
 may not happen in the same order the laws were registered. Instead,
 organize the depending rules in one law to resolve any dependency
 conflicts.
 """

 self.__laws.append(law)
 self.reporter.laws = self.laws

[docs] def enforce(self):
 """
 Run all the registered laws and rules one by one. This method is responsible
 for executing the registered laws, push changes to the git origin and open
 the pull request.

 This method glues together the lower level components and makes sure that the
 execution of laws and rules can not be called more than once at the same time
 for a match.
 """

 self.reporter.additional_data.started = datetime.now().isoformat()
 self.checkout_branch()

 for law in self.laws:
 law.enforce()

 changes_pushed = self.push_changes()

 if not changes_pushed:
 logging.info("No changes pushed")
 return

 pull_request_url = self.create_pull_request()

 for notification in self.notifications:
 notification.send(pull_request_url)

 self.reporter.additional_data.finished = datetime.now().isoformat()
 self.reporter.additional_data.pull_request_url = pull_request_url

 Source code for hammurabi.notifications.base

"""
Notifications are responsible for letting the end users/owners that a change
happened on a git repository. Notifications describes where to send the
notification but not responsible for delivering it. For example, you can use
an email notification method, but the notification method is not responsible
for handling emails and delivering the message.
"""

from abc import ABC, abstractmethod
import logging
from typing import List, Optional

from hammurabi.config import config
from hammurabi.exceptions import NotificationSendError
from hammurabi.helpers import full_strip

[docs]class Notification(ABC):
 """
 A ``git push`` notification which serves as a base for different kind
 of notifications like Slack or E-mail notification.
 """

 def __init__(self, recipients: List[str], message_template: str) -> None:
 self.recipients = recipients
 self.message_template = full_strip(message_template)

 def __format_message(self, changes_link: Optional[str]) -> str:
 """
 Fill the message template with actual values, such as repository owner/name
 and link to changes.

 :param changes_link: Link to the list of changes
 :type changes_link: Optional[str]

 :return: Returns the formatted message will be sent to the recipients
 :rtype: str
 """

 return self.message_template.format(
 repository=config.settings.repository, changes_link=changes_link
)

[docs] @abstractmethod
 def notify(self, message: str, changes_link: Optional[str]) -> None:
 """
 Handle sending the desired message to the recipients.

 :param message: Message to send
 :type message: str

 :param changes_link: Link to the list of changes
 :type changes_link: Optional[str]

 :raise: ``NotificationSendError`` if the notification cannot be delivered
 """

[docs] def send(self, changes_link: Optional[str]) -> None:
 """
 Notify the users/owners about a change on the git repository. In case change
 link is provided, the user will be able to go directly checking the changes.

 :param changes_link: Link to the list of changes
 :type changes_link: Optional[str]
 """

 message = self.__format_message(changes_link)
 recipients = ", ".join(self.recipients)

 try:
 logging.info("Sending notification to %s", recipients)
 self.notify(message, changes_link)
 except NotificationSendError as exc:
 logging.error("Sending notification to %s failed: %s", recipients, str(exc))

 Source code for hammurabi.notifications.slack

"""
Send notification to a slack channel when Hammurabi creates/updates a pull request.
"""

import logging
from typing import Optional

from slack_webhook import Slack # type: ignore

from hammurabi.exceptions import NotificationSendError
from hammurabi.notifications.base import Notification

[docs]class SlackNotification(Notification):
 """
 Send slack notification through Slack webhooks.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Renamed, IsDirectoryExist, SlackNotification
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Renamed(
 >>> name="Rename the dir if an other one exists",
 >>> path=Path("old-name"),
 >>> new_name="new-name",
 >>> preconditions=[
 >>> IsDirectoryExist(path=Path("other-dir"))
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar(notifications=[
 >>> SlackNotification(
 >>> recipients=["https://slack.webhook.url"],
 >>> message_template="Dear team, the {repository} has new update.",
 >>>)
 >>>])
 >>> pillar.register(example_law)

 .. warning::

 This notification requires the ``slack-notifications`` extra to be installed.
 """

[docs] def notify(self, message: str, changes_link: Optional[str]) -> None:
 """
 Handle notification send through Slack webhooks.

 :param message: Message to send
 :type message: str

 :param changes_link: Link to the list of changes
 :type changes_link: Optional[str]
 """

 try:
 # Every recipient is a slack webhook URL
 for hook in self.recipients:
 logging.debug('Sending to hook "%s"', hook)
 Slack(url=hook).post(text=message)
 logging.debug("Notification sent")
 except Exception as exc:
 raise NotificationSendError from exc

 Source code for hammurabi.preconditions.attributes

"""
This module contains the definition of Preconditions which are related
to attributes of a file or directory.
"""

from pathlib import Path

from hammurabi.preconditions.base import Precondition

[docs]class IsOwnedBy(Precondition):
 """
 Check if the given file or directory has the required ownership.

 To check only the user use ``owner="username"``. To check only the
 group use ``owner=":group_name"`` (please note the colon ``:``).
 It is also possible to check both username and group at the same time
 by using ``owner="username:group_name"``.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Renamed, IsOwnedBy
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Renamed(
 >>> name="Rename pyproject.toml if owned by gabor",
 >>> path=Path("./pyproject.toml"),
 >>> new_name="gabor-pyproject.toml"
 >>> preconditions=[
 >>> IsOwnedBy(path=Path("./pyproject.toml"), owner="gabor")
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 :param path: Input file's path
 :type path: Path

 :param owner: Owner user and/or group of the file/directory separated by colon
 :type owner: str
 """

 def __init__(self, path: Path, owner: str, **kwargs) -> None:
 self.user, self.group = map(lambda x: x.strip(), owner.partition(":")[::2])
 super().__init__(param=path, **kwargs)

[docs] def task(self) -> bool:
 """
 Check if the ownership meets the requirements.

 :return: Returns True if the owner matches
 :rtype: bool
 """

 self.param: Path

 is_owned = False
 is_owned_by_user = self.user == self.param.owner()
 is_owned_by_group = self.group == self.param.group()

 if self.user and self.group:
 is_owned = is_owned_by_user and is_owned_by_group
 elif self.user:
 is_owned = is_owned_by_user
 elif self.group:
 is_owned = is_owned_by_group

 return is_owned

[docs]class IsNotOwnedBy(IsOwnedBy):
 """
 Opposite of :class:`hammurabi.preconditions.attributes.IsOwnedBy`.
 """

[docs] def task(self) -> bool:
 """
 Check if the ownership does not meet the requirements.

 :return: Returns True if the owner matches
 :rtype: bool
 """

 return not super().task()

[docs]class HasMode(Precondition):
 """
 Check if the given file or directory has the required permissions/mode.

 You can read more about the available modes at https://docs.python.org/3/library/stat.html.

 Example usage:

 .. code-block:: python

 >>> import stat
 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Renamed, HasMode
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Renamed(
 >>> name="Rename pyproject.toml if owned by gabor",
 >>> path=Path("./pyproject.toml"),
 >>> new_name="gabor-pyproject.toml"
 >>> preconditions=[
 >>> HasMode(path=Path("scripts/run_unittests.sh"), mode=stat.S_IXOTH)
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 :param path: Input file's path
 :type path: Path

 :param mode: The desired mode to check
 :type mode: str
 """

 def __init__(self, path: Path, mode: int, **kwargs) -> None:
 self.mode = mode
 super().__init__(param=path, **kwargs)

[docs] def task(self) -> bool:
 """
 Check if the given mode is set on the file or directory.

 :return: Returns True if the desired mode is set
 :rtype: bool
 """

 self.param: Path
 return bool(self.param.stat().st_mode & self.mode)

[docs]class HasNoMode(HasMode):
 """
 Opposite of :class:`hammurabi.preconditions.attributes.HasMode`.
 """

[docs] def task(self) -> bool:
 """
 Check if the given mode is not set on the file or directory.

 :return: Returns True if the desired mode is not set
 :rtype: bool
 """

 return not super().task()

 Source code for hammurabi.preconditions.base

"""
This module contains the definition of Preconditions which describes what to do with
the received parameter and does the necessary changes. The preconditions are used to
enable developers skipping or enabling rules based on a set of conditions.

.. warning::

 The precondition is for checking that a rule should or shouldn't run, not for
 breaking/aborting the execution. To indicate a precondition failure as an error
 in the logs, create a precondition which raises an exception if the requirements
 doesn't match.
"""

from __future__ import annotations

from abc import ABC, abstractmethod
import logging
from typing import Any, Optional

from hammurabi.rules.abstract import AbstractRule

[docs]class Precondition(AbstractRule, ABC):
 """
 This class which describes the bare minimum and helper functions for Preconditions.
 A precondition defines what and how should be checked/validated before executing a Rule.
 Since preconditions are special rules, all the functions available what can be used for
 :class:`hammurabi.rules.base.AbstractRule`.

 As said, preconditions are special from different angles. While this is not true for
 Rules, Preconditions will always have a name, hence giving a name to a Precondition is not
 necessary. In case no name given to a precondition, the name will be the name of the class
 and " precondition" suffix.

 Example usage:

 .. code-block:: python

 >>> import logging
 >>> from typing import Optional
 >>> from pathlib import Path
 >>> from hammurabi import Precondition
 >>>
 >>> class IsFileExist(Precondition):
 >>> def __init__(self, path: Optional[Path] = None, **kwargs) -> None:
 >>> super().__init__(param=path, **kwargs)
 >>>
 >>> def task(self) -> bool:
 >>> return self.param and self.param.exists()

 :param name: Name of the rule which will be used for printing
 :type name: Optional[str]

 :param param: Input parameter of the rule will be used as ``self.param``
 :type param: Any

 .. note:

 Since ``Precondition`` inherits from ``Rule``, the parameter after the name of the
 precondition will be used for ``self.param``. This can be handy for interacting
 with input parameters.

 .. warning:

 Although ``Precondition`` inherits from ``Rule``, the pipe and children execution
 is intentionally not implemented.
 """

 def __init__(self, name: Optional[str] = None, param: Optional[Any] = None) -> None:
 name = name or f"{self.__class__.__name__} precondition"
 super().__init__(name, param)

 def __repr__(self) -> str:
 return f'{self.__class__.__name__}(name="{self.name}", param="{self.param}")'

 def __str__(self) -> str:
 if self.name.endswith("precondition"):
 return self.name

 return f"{self.name} precondition"

[docs] @abstractmethod
 def task(self) -> bool:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Precondition.task`
 must be parameterized. Any difference in the parameters or return type will result
 in pylint/mypy errors.

 To be able to use the power of ``pipe`` and ``children``, return
 something which can be generally used for other rules as in input.

 :return: Returns an output which can be used as an input for other rules
 :rtype: Any (usually same as `self.param`'s type)
 """

[docs] def execute(self) -> bool:
 """
 Execute the precondition.

 :raise: ``AssertionError``
 :return: None
 """

 logging.info('Running task for "%s"', self.name)

 self.pre_task_hook()
 result = self.task()
 self.post_task_hook()

 return result

 Source code for hammurabi.preconditions.directories

"""
This module contains the definition of Preconditions which are related
to directories.
"""

from pathlib import Path

from hammurabi.preconditions.base import Precondition

[docs]class IsDirectoryExist(Precondition):
 """
 Check if the given directory exists.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Renamed, IsDirectoryExist
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Renamed(
 >>> name="Rename the dir if an other one exists",
 >>> path=Path("old-name"),
 >>> new_name="new-name",
 >>> preconditions=[
 >>> IsDirectoryExist(path=Path("other-dir"))
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 :param path: Input directory's path
 :type path: Path
 """

 def __init__(self, path: Path, **kwargs) -> None:
 super().__init__(param=path, **kwargs)

[docs] def task(self) -> bool:
 """
 Check if the given directory exists.

 :return: Returns True if the directory exists
 :rtype: bool
 """

 self.param: Path
 return self.param.exists() and self.param.is_dir()

[docs]class IsDirectoryNotExist(IsDirectoryExist):
 """
 Opposite of :class:`hammurabi.preconditions.directories.IsDirectoryExist`.
 """

[docs] def task(self) -> bool:
 """
 Check if the given directory not exists.

 :return: Returns True if the directory not exists
 :rtype: bool
 """

 return not super().task()

 Source code for hammurabi.preconditions.files

"""
Files preconditions module contains simple preconditions used for checking
file existence.
"""

from pathlib import Path

from hammurabi.preconditions.base import Precondition

[docs]class IsFileExist(Precondition):
 """
 Check if the given file exists.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Renamed, IsFileExist
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Renamed(
 >>> name="Rename the file if an other one exists",
 >>> path=Path("old-name"),
 >>> new_name="new-name",
 >>> preconditions=[
 >>> IsFileExist(path=Path("other-file"))
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 :param path: Input files's path
 :type path: Path
 """

 def __init__(self, path: Path, **kwargs) -> None:
 super().__init__(param=path, **kwargs)

[docs] def task(self) -> bool:
 """
 Check if the given file exists.

 :return: Returns True if the file exists
 :rtype: bool
 """

 self.param: Path
 return self.param.exists() and self.param.is_file()

[docs]class IsFileNotExist(IsFileExist):
 """
 Opposite of :class:`hammurabi.preconditions.files.IsFileExist`.
 """

[docs] def task(self) -> bool:
 """
 Check if the given file not exists.

 :return: Returns True if the file not exists
 :rtype: bool
 """

 return not super().task()

 Source code for hammurabi.preconditions.text

"""
This module contains the definition of Preconditions which are related
to general text files.
"""

from pathlib import Path
import re

from hammurabi.preconditions.base import Precondition

[docs]class IsLineExist(Precondition):
 """
 Check if the given line exists.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Renamed, IsLineExist
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Renamed(
 >>> name="Rename the file if an other one exists",
 >>> path=Path("old-name"),
 >>> new_name="new-name",
 >>> preconditions=[
 >>> IsLineExist(path=Path("other-file"), criteria=r"^string=some-value$")
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 :param path: Input files's path
 :type path: Path

 :param criteria: Regexp of the desired line
 :type criteria: str

 .. warning::

 When using ``criteria`` be aware that partial matches will be recognized
 as well. This means you must be as strict with regular expressions as
 it is needed. Example of a partial match:

 >>> import re
 >>> pattern = re.compile(r"apple")
 >>> text = "appletree"
 >>> pattern.match(text).group()
 >>> 'apple'
 """

 def __init__(self, path: Path, criteria: str, **kwargs) -> None:
 self.criteria = re.compile(self.validate(criteria, required=True))
 super().__init__(param=path, **kwargs)

[docs] def task(self) -> bool:
 """
 Check if the given line exists.

 :return: Returns True if the line exists
 :rtype: bool
 """

 self.param: Path
 lines = self.param.read_text().splitlines()
 return any(filter(self.criteria.match, lines))

[docs]class IsLineNotExist(IsLineExist):
 """
 Opposite of :class:`hammurabi.preconditions.text.IsLineExist`.
 """

[docs] def task(self) -> bool:
 """
 Check if the given line not exists.

 :return: Returns True if the line not exists
 :rtype: bool
 """

 return not super().task()

 Source code for hammurabi.reporters.base

pylint: disable=too-few-public-methods

"""
This module contains the definition of Reporters which is responsible for
exposing the execution results in several formats.
"""
from abc import ABC, abstractmethod
from datetime import datetime
import logging
from pathlib import Path
from typing import Any, Iterable, List

from pydantic import BaseModel # pylint: disable=no-name-in-module

from hammurabi.config import config
from hammurabi.law import Law
from hammurabi.rules.base import Rule

[docs]class LawItem(BaseModel):
 """
 LawItem represents the basic summary of a low attached to a rule.
 """

 name: str
 description: str

[docs]class RuleItem(BaseModel):
 """
 RuleItem represents the registered rule and its status.

 The rule (as normally) has the status of the execution which can be
 passed, failed or skipped.
 """

 name: str
 law: LawItem

[docs]class AdditionalData(BaseModel):
 """
 Additional data which may not be set for every execution.
 """

 # Add the execution start and finish datetime
 # to the report for statistic purposes
 started: str = datetime.min.isoformat()
 finished: str = datetime.min.isoformat()

 # When PR is not created, still do the reporting
 pull_request_url: str = ""

[docs]class Report(BaseModel):
 """
 The report object which contains all the necessary and optional
 data for the report will be generated.
 """

 passed: List[RuleItem] = list()
 failed: List[RuleItem] = list()
 skipped: List[RuleItem] = list()
 additional_data: AdditionalData = AdditionalData()

[docs]class Reporter(ABC):
 """
 Abstract class which describes the bare minimum and helper functions for Reporters.
 A reporter can generate different outputs from the results of the execution. Also,
 reporters can be extended by additional data which may not contain data for every
 execution like GitHub pull request url. The report file's name set by ``report_name``
 config parameter.

 .. note::

 Reporters measures the execution time for the complete execution from checking
 out the git branch until the pull request creation finished. Although the
 completion time is measured, it is not detailed for the rules. At this moment
 measuring execution time of rules is not planned.

 Example usage:

 .. code-block:: python

 >>> from hammurabi.reporters.base import Reporter
 >>>
 >>>
 >>> class JsonReporter(Reporter):
 >>> def report(self) -> str:
 >>> return self._get_report().json()

 :param laws: Iterable Law objects which will be included to the report
 :type laws: Iterable[Law]
 """

 def __init__(self, laws: List[Law]) -> None:
 self.laws = laws
 self.additional_data: AdditionalData = AdditionalData()
 self.report_path: Path = config.settings.report_name

 @staticmethod
 def __get_rule_item_from_rule(law: Law, rule: Rule, **kwargs) -> RuleItem:
 """
 Get a rule item from a combination of a Rule and a Law.

 :param law: The parent law of the rule
 :type law: ``hammurabi.law.Law``

 :param rule: The rule which should be transformed
 :type rule: ``hammurabi.rules.base.Rule``

 :return: Return the transformed RuleItem from the given law and rule
 :rtype: RuleItem
 """

 logging.info('Collecting report data for "%s"', str(rule))

 return RuleItem(
 name=rule.name,
 law=LawItem(name=law.name, description=law.description),
 **kwargs,
)

 def __get_rule_items(
 self, law: Law, rules: Iterable[Rule], **kwargs
) -> List[RuleItem]:
 """
 Get all the passed rule items for a law.

 :param law: The parent law of the rule
 :type law: ``hammurabi.law.Law``

 :return: Return all the passed rules transformed to ``RuleItem``s
 :rtype: List[RuleItem]
 """

 logging.info('Collecting report data for "%s"', str(law))

 items: List[RuleItem] = list()

 for rule in rules:
 items += (self.__get_rule_item_from_rule(law, rule, **kwargs),)

 return items

 def _get_report(self) -> Report:
 """
 Get and prepare the report for actual reporting.

 :return: Return the assembled report object
 :rtype: ``hammurabi.reporters.base.Report``
 """

 logging.info("Generating execution report")

 report = Report(additional_data=self.additional_data)

 for law in self.laws:
 report.passed += self.__get_rule_items(law, law.passed_rules)
 report.failed += self.__get_rule_items(law, law.failed_rules)
 report.skipped += self.__get_rule_items(law, law.skipped_rules)

 logging.info("Execution report generated")

 return report

[docs] @abstractmethod
 def report(self) -> Any:
 """
 Do the actual reporting based on the report assembled.
 """

 Source code for hammurabi.reporters.json

pylint: disable=too-few-public-methods
import logging

from hammurabi.reporters.base import Reporter

[docs]class JsonReporter(Reporter):
 """
 Generate reports in Json format and write into file. JsonReporter
 is the default reporter of the pillar. The example below shows the
 way how to replace a reporter which could base on the JsonReporter.

 The report will be written into the configured report file. The report
 file's name set by ``report_name`` config parameter.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, OwnerChanged
 >>> from my_company import MyJsonReporter
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> OwnerChanged(
 >>> name="Change ownership of nginx config",
 >>> path=Path("./nginx.conf"),
 >>> new_value="www:web_admin"
 >>>),
 >>>)
 >>>)
 >>>
 >>> # override pillar's default JsonReporter reporter
 >>> pillar = Pillar(reporter_class=MyJsonReporter)
 """

[docs] def report(self) -> None:
 """
 Do the actual reporting based on the report assembled in Json
 format. The report will be written into the configured report file.
 """

 logging.info('Writing report to "%s"', str(self.report_path))
 self.report_path.write_text(self._get_report().json())

 Source code for hammurabi.rules.abstract

"""
This module contains the definition of the AbstractRule which describes what is shared between
Rules and Preconditions.
"""

from abc import ABC, abstractmethod
from typing import Any, Optional

from hammurabi.helpers import full_strip

[docs]class AbstractRule(ABC):
 """
 Abstract class which describes the common behaviour for any kind of rule even
 it is a :class:`hammurabi.rules.base.Rule` or :class:`hammurabi.rules.base.Precondition`

 :param name: Name of the rule which will be used for printing
 :type name: str

 :param param: Input parameter of the rule will be used as ``self.param``
 :type param: Any
 """

 __slots__ = ("__name", "param", "made_changes")

 def __init__(self, name: str, param: Any) -> None:
 self.param = param
 self.__name = name.strip()

 # Set by GitMixin or other mixins to indicate that the rule did changes.
 # Rules can set this flag directly too. Only those rules will be indicated on
 # Git commit which are made changes.
 self.made_changes = False

[docs] def validate(self, val: Any, cast_to: Optional[Any] = None, required=False) -> Any:
 """
 Validate and/or cast the given value to another type. In case the
 existence of the value is required or casting failed an exception
 will be raised corresponding to the failure.

 :param val: Value to validate
 :type val: Any

 :param cast_to: Type in which the value should be returned
 :type cast_to: Any

 :param required: Check that the value is not falsy
 :type required: bool

 :raise: ``ValueError`` if the given value is required but falsy
 :return: Returns the value in its original or casted type
 :rtype: Any

 Example usage:

 .. code-block:: python

 >>> from typing import Optional
 >>> from pathlib import Path
 >>> from hammurabi import Rule
 >>>
 >>> class MyAwesomeRule(Rule):
 >>> def __init__(self, name: str, param: Optional[Path] = None):
 >>> self.param = self.validate(param, required=True)
 >>>
 >>> # Other method definitions ...
 >>>
 """

 if required and not val:
 raise ValueError(
 f"Parameter validation of {str(self)} failed, the given value is empty"
)

 if not cast_to:
 return val

 return cast_to(val)

 @property
 def name(self) -> str:
 """
 Return the name of the :class:`hammurabi.rules.base.Rule`.

 :return: The name of the given :class:`hammurabi.rules.base.Rule`
 :rtype: str

 .. note::

 Name is defined as a separate property and not an attribute to
 make sure we return a default value in those cases when we cannot
 set the name due to an error.
 """

 try:
 return self.__name
 except AttributeError:
 return f"{self.__class__.__name__}"

 @property
 def description(self) -> str:
 """
 Return the description of the :func:`hammurabi.rules.base.Rule.task`
 based on its docstring.

 :return: Stripped description of :func:`hammurabi.rules.base.Rule.task`
 :rtype: str

 .. note::

 As of this property returns the docstring of :func:`hammurabi.rules.base.Rule.task`
 method, it worth to take care of its description when initialized.
 """

 return full_strip(getattr(self.task, "__doc__", ""))

 @property
 def documentation(self) -> str:
 """
 Return the documentation of the rule based on its name, docstring and
 the description of its task.

 :return: Concatenation of the rule's name, docstring, and task description
 :rtype: str

 .. note::

 As of this method returns the name and docstring of the rule
 it worth to take care of its name and description when initialized.
 """

 doc = full_strip(getattr(self, "__doc__", ""))
 return f"{self.name}\n{doc}\n{self.description}"

[docs] def pre_task_hook(self) -> None:
 """
 Run code before performing the :func:`hammurabi.rules.base.Rule.task`.
 To access the parameter passed to the rule, always use ``self.param``
 for :func:`hammurabi.rules.base.Rule.pre_task_hook`.

 .. warning::

 This method is not called in dry run mode.
 """

[docs] def post_task_hook(self):
 """
 Run code after the :func:`hammurabi.rules.base.Rule.task` has been
 performed. To access the parameter passed to the rule, always use
 ``self.param`` for :func:`hammurabi.rules.base.Rule.post_task_hook`.

 .. note::

 This method can be used for execution of git commands
 like git add, or double checking a modification made.

 .. warning::

 This method is not called in dry run mode.
 """

[docs] @abstractmethod
 def task(self) -> Any:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 or :func:`hammurabi.preconditions.base.Precondition.task` must be parameterized.
 Any difference in the parameters will result in pylint/mypy errors.

 To be able to use the power of ``pipe`` and ``children``, return
 something which can be generally used for other rules as in input.

 :return: Returns an output which can be used as an input for other rules
 :rtype: Any (usually same as `self.param`'s type)

 .. note::

 Although it is a good practice to return the same type for the output
 that the input has, but this is not the case for "Boolean Rules".
 "Boolean Rules" should return True (or truthy) or False (or falsy) values.
 """

 Source code for hammurabi.rules.attributes

"""
Attributes module contains file and directory attribute manipulation
rules which can be handy after creating new files or directories or
even when adding execute permissions for a script in the project.
"""

from abc import abstractmethod
import logging
import os
from pathlib import Path
import shutil
from typing import Any, Optional

from hammurabi.rules.common import SinglePathRule

[docs]class SingleAttributeRule(SinglePathRule):
 """
 Extend :class:`hammurabi.rules.base.Rule` to handle attributes of a single
 file or directory.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 new_value: Optional[str] = None,
 **kwargs,
) -> None:
 self.new_value = self.validate(new_value, cast_to=str, required=True)
 super().__init__(name, path, **kwargs)

[docs] def post_task_hook(self):
 self.git_add(self.param)

[docs] @abstractmethod
 def task(self) -> Any:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

[docs]class OwnerChanged(SingleAttributeRule):
 """
 Change the ownership of a file or directory.

 The new ownership of a file or directory can be set in three ways.
 To set only the user use ``new_value="username"``. To set only the
 group use ``new_value=":group_name"`` (please note the colon ``:``).
 It is also possible to set both username and group at the same time
 by using ``new_value="username:group_name"``.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, OwnerChanged
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> OwnerChanged(
 >>> name="Change ownership of nginx config",
 >>> path=Path("./nginx.conf"),
 >>> new_value="www:web_admin"
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def task(self) -> Path:
 """
 Change the ownership of the given file or directory.
 None of the new username or group name can contain colons,
 otherwise only the first two colon separated values will be
 used as username and group name.

 :return: Return the input path as an output
 :rtype: Path
 """

 user, group = map(lambda x: x.strip(), self.new_value.partition(":")[::2])

 logging.debug('Changing owner of "%s" to "%s"', self.param, self.new_value)
 shutil.chown(str(self.param), user=user or None, group=group or None)

 return self.param

[docs]class ModeChanged(SingleAttributeRule):
 """
 Change the mode of a file or directory.

 Supported modes:

 +-------------------+-------------------------------------+
 | Config option | Description |
 +===================+=====================================+
 | stat.S_ISUID | Set user ID on execution. |
 +-------------------+-------------------------------------+
 | stat.S_ISGID | Set group ID on execution. |
 +-------------------+-------------------------------------+
 | stat.S_ENFMT | Record locking enforced. |
 +-------------------+-------------------------------------+
 | stat.S_ISVTX | Save text image after execution. |
 +-------------------+-------------------------------------+
 | stat.S_IREAD | Read by owner. |
 +-------------------+-------------------------------------+
 | stat.S_IWRITE | Write by owner. |
 +-------------------+-------------------------------------+
 | stat.S_IEXEC | Execute by owner. |
 +-------------------+-------------------------------------+
 | stat.S_IRWXU | Read, write, and execute by owner. |
 +-------------------+-------------------------------------+
 | stat.S_IRUSR | Read by owner. |
 +-------------------+-------------------------------------+
 | stat.S_IWUSR | Write by owner. |
 +-------------------+-------------------------------------+
 | stat.S_IXUSR | Execute by owner. |
 +-------------------+-------------------------------------+
 | stat.S_IRWXG | Read, write, and execute by group. |
 +-------------------+-------------------------------------+
 | stat.S_IRGRP | Read by group. |
 +-------------------+-------------------------------------+
 | stat.S_IWGRP | Write by group. |
 +-------------------+-------------------------------------+
 | stat.S_IXGRP | Execute by group. |
 +-------------------+-------------------------------------+
 | stat.S_IRWXO | Read, write, and execute by others. |
 +-------------------+-------------------------------------+
 | stat.S_IROTH | Read by others. |
 +-------------------+-------------------------------------+
 | stat.S_IWOTH | Write by others. |
 +-------------------+-------------------------------------+
 | stat.S_IXOTH | Execute by others. |
 +-------------------+-------------------------------------+

 Example usage:

 .. code-block:: python

 >>> import stat
 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, ModeChanged
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> ModeChanged(
 >>> name="Update script must be executable",
 >>> path=Path("./scripts/update.sh"),
 >>> new_value=stat.S_IXGRP | stat.S_IXGRP | stat.S_IXOTH
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 new_value: Optional[int] = None,
 **kwargs,
) -> None:
 # Passing the new value and then re-defining it is ugly, but needed
 # because the super class already has a validation on the new_value
 # field. For the first time it will be casted to string and then in
 # this __init__ it will be casted to integer. This logic can be
 # changed when it became frustrating.
 super().__init__(name, path, new_value=str(new_value), **kwargs)
 self.new_value = self.validate(self.new_value, cast_to=int, required=True)

[docs] def task(self) -> Path:
 """
 Change the mode of the given file or directory.

 :return: Return the input path as an output
 :rtype: Path
 """

 logging.debug('Changing mode of "%s" to "%s"', self.param, self.new_value)
 os.chmod(str(self.param), self.new_value)
 return self.param

 Source code for hammurabi.rules.base

"""
This module contains the definition of Rule which describes what to do with
the received parameter and does the necessary changes.

The Rule is an abstract class which describes all the required methods and
parameters, but it can be extended and customized easily by inheriting from
it. A good example for this kind of customization is :class:`hammurabi.rules.text.LineExists`
which adds more parameters to :class:`hammurabi.rules.files.SingleFileRule` which
inherits from :class:`hammurabi.rules.base.Rule`.
"""

from __future__ import annotations

from abc import ABC, abstractmethod
import logging
from typing import Any, Iterable, List, Optional, Union

from hammurabi.config import config
from hammurabi.exceptions import PreconditionFailedError
from hammurabi.preconditions.base import Precondition
from hammurabi.rules.abstract import AbstractRule

[docs]class Rule(AbstractRule, ABC):
 """
 Abstract class which describes the bare minimum and helper functions for Rules.
 A rule defines what and how should be executed. Since a rule can have piped and
 children rules, the "parent" rule is responsible for those executions. This kind
 of abstraction allows to run both piped and children rules sequentially in a given
 order.

 Example usage:

 .. code-block:: python

 >>> from typing import Optional
 >>> from pathlib import Path
 >>> from hammurabi import Rule
 >>> from hammurabi.mixins import GitMixin
 >>>
 >>> class SingleFileRule(Rule, GitMixin):
 >>> def __init__(self, name: str, path: Optional[Path] = None, **kwargs) -> None:
 >>> super().__init__(name, path, **kwargs)
 >>>
 >>> def post_task_hook(self):
 >>> self.git_add(self.param)
 >>>
 >>> @abstractmethod
 >>> def task(self) -> Path:
 >>> pass

 :param name: Name of the rule which will be used for printing
 :type name: str

 :param param: Input parameter of the rule will be used as ``self.param``
 :type param: Any

 :param preconditions: "Boolean Rules" which returns a truthy or falsy value
 :type preconditions: Iterable["Rule"]

 :param pipe: Pipe will be called when the rule is executed successfully
 :type pipe: Optional["Rule"]

 :param children: Children will be executed after the piped rule if there is any
 :type children: Iterable["Rule"]

 .. warning::

 Preconditions can be used in several ways. The most common way is to run
 "Boolean Rules" which takes a parameter and returns a truthy or falsy value.
 In case of a falsy return, the precondition will fail and the rule will not be executed.

 If any modification is done by any of the rules which are used as a
 precondition, those changes will be committed.
 """

 def __init__(
 self,
 name: str,
 param: Any,
 preconditions: Iterable[Precondition] = (),
 pipe: Optional["Rule"] = None,
 children: Iterable["Rule"] = (),
) -> None:
 self.pipe = pipe
 self.children = children
 self.preconditions = preconditions

 super().__init__(name, param)

 def __repr__(self) -> str:
 return (
 f"{self.__class__.__name__}("
 f'name="{self.name}", '
 f'param="{self.param}", '
 f"preconditions={self.preconditions}, "
 f"pipe={self.pipe}, "
 f"children={self.children})"
)

 def __str__(self) -> str:
 return f"{self.name} rule"

 @property
 def can_proceed(self) -> bool:
 """
 Evaluate if a rule can continue its execution. In case the execution
 is called with ``dry_run`` config option set to true, this method will
 always return ``False`` to make sure not performing any changes. If
 preconditions are set, those will be evaluated by this method.

 :return: Return with the result of evaluation
 :rtype: bool

 .. warning::

 :func:`hammurabi.rules.base.Rule.can_proceed` checks the result of
 ``self.preconditions``, which means the preconditions are executed.
 Make sure that you are not doing any modifications within rules used
 as preconditions, otherwise take extra attention for those rules.
 """

 logging.debug('Checking if "%s" can proceed with execution', self.name)
 proceed: bool = True

 if self.preconditions:
 proceed = all([condition.execute() for condition in self.preconditions])

 return not config.settings.dry_run and proceed

 def __preflight_check(self) -> None:
 """
 Run a preflight check. If the execution can not proceed, determined by
 the can_proceed property, an exception will be raised. We are differentiating
 the exceptions caused by dry run and precondition failure.

 :raises: ``PreconditionFailedError`` if precondition failed otherwise an
 ``AssertionError`` raised
 """

 if not self.can_proceed:
 if config.settings.dry_run:
 raise AssertionError(f'"{self.name}" cannot proceed because of dry run')

 raise PreconditionFailedError(f'"{self.name}" cannot proceed')

[docs] def get_rule_chain(self, rule: "Rule") -> List[Union["Rule", Precondition]]:
 """
 Get the execution chain of the given rule. The execution
 order is the following:

 * task (current rule's :func:`hammurabi.rules.base.Rule.task`)
 * Piped rule
 * Children rules (in the order provided by the iterator used)

 :param rule: The rule which execution chain should be returned
 :type rule: :class:`hammurabi.rules.base.Rule`

 :return: Returns the list of rules in the order above
 :rtype: List[Rule]
 """

 rules: List[Union[Rule, Precondition]] = list(rule.preconditions)
 rules.append(rule)

 if rule.pipe:
 rules.extend(self.get_rule_chain(rule.pipe))

 for child in rule.children:
 rules.extend(self.get_rule_chain(child))

 return rules

[docs] def get_execution_order(self) -> List[Union["Rule", Precondition]]:
 """
 Same as :func:`hammurabi.rules.base.Rule.get_rule_chain` but
 for the root rule.
 """

 order: List[Union[Rule, Precondition]] = list(self.preconditions)
 order.append(self)

 if self.pipe:
 order.extend(self.get_rule_chain(self.pipe))

 for child in self.children:
 order.extend(self.get_rule_chain(child))

 return order

[docs] @abstractmethod
 def task(self) -> Any:
 """
 See the documentation of :func:`hammurabi.rules.base.AbstractRule.task`
 """

[docs] def execute(self, param: Optional[Any] = None):
 """
 Execute the rule's task, its piped and children rules as well.

 The execution order of task, piped rule and children rules
 described in but not by :func:`hammurabi.rules.base.Rule.get_rule_chain`.

 :param param: Input parameter of the rule given by the user
 :type param: Optional[Any]

 :raise: ``AssertionError``
 :return: None

 .. note::

 The input parameter can be optional because of the piped and
 children rules which are receiving the output of its parent. In
 this case the user is not able to set the param manually, since it
 is calculated.

 .. warning::

 If ``self.can_proceed`` returns ``False`` the whole execution
 will be stopped immediately and ``AssertionError`` will be
 raised.
 """

 # In case of piped execution, the Rule will be called without
 # any additional argument, therefore we must set it manually
 # to be able to work with hooks.
 self.param = param or self.param

 self.__preflight_check()

 logging.debug('Running pre task hook for "%s"', self.name)
 self.pre_task_hook()

 logging.info('Running task for "%s"', self.name)
 result = self.task()

 logging.debug('Running post task hook for" %s"', self.name)
 self.post_task_hook()

 logging.info('Rule "%s" finished successfully', self.name)

 if self.pipe:
 logging.debug('Executing pipe "%s" of "%s"', self.pipe.name, self.name)
 self.pipe.execute(result)

 if self.children:
 logging.debug('Executing children rules of "%s"', self.name)
 for child in self.children:
 logging.debug('Executing child "%s" of "%s"', child.name, self.name)
 child.execute(result)

 Source code for hammurabi.rules.common

from abc import abstractmethod
from pathlib import Path
from typing import Any, Iterable, Optional

from hammurabi.mixins import GitMixin
from hammurabi.rules.base import Rule

[docs]class SinglePathRule(Rule, GitMixin):
 """
 Abstract class which extends :class:`hammurabi.rules.base.Rule` to handle operations on a
 single directory.
 """

 def __init__(self, name: str, path: Optional[Path] = None, **kwargs) -> None:
 super().__init__(name, path, **kwargs)

[docs] def post_task_hook(self):
 self.git_add(self.param)

[docs] @abstractmethod
 def task(self) -> Any:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

[docs]class MultiplePathRule(Rule, GitMixin):
 """
 Abstract class which extends :class:`hammurabi.rules.base.Rule` to handle operations on
 multiple files.
 """

 def __init__(
 self, name: str, paths: Optional[Iterable[Path]] = (), **kwargs
) -> None:
 super().__init__(name, paths, **kwargs)

[docs] def post_task_hook(self):
 for path in self.param:
 self.git_add(path)

[docs] @abstractmethod
 def task(self) -> Any:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

 Source code for hammurabi.rules.dictionaries

"""
Extend :class:`hammurabi.rules.base.Rule` to handle parsed content manipulations dictionaries.
Standalone these rules are not useful, but they are very handy when files should be manipulated
like Yaml or Json which will be parsed as dict.

These rules are intentionally not exported directly through hammurabi as it is done for Yaml or
Json rules. The reason, as it is mentioned above, these rules are not standalone rules. Also, it
is intentional that these rules are not represented in the documentation's `Rules section`_.

.. _`Rules section`: https://hammurabi.readthedocs.io/en/latest/rules.html
"""

from abc import ABC, abstractmethod
from copy import deepcopy
import logging
from pathlib import Path
from typing import Any, Callable, Dict, Hashable, List, MutableMapping, Optional, Union

from hammurabi.rules.common import SinglePathRule
from hammurabi.rules.mixins import SelectorMixin

[docs]class SinglePathDictParsedRule(SinglePathRule, SelectorMixin):
 """
 Extend :class:`hammurabi.rules.base.Rule` to handle parsed content
 manipulations dictionaries. Standalone this rule is not useful, but
 it is very handy when files should be manipulated like Yaml or
 Json which will be parsed as dict. This rule ensures that the implementation
 will be the same for these rules, so the maintenance cost and effort
 is reduced.

 Although this rule is not that powerful on its own, we would not
 like to make it an abstract class like :class:`hammurabi.rules.base.Rule`
 because it can easily happen that at some point this rule will be
 a standalone rule.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 key: str = "",
 loader: Callable[[Any], MutableMapping[str, Any]] = dict,
 **kwargs,
) -> None:
 self.selector = self.validate(key, required=True)
 self.split_key = self.selector.split(".")
 self.key_name: str = self.split_key[-1]
 self.loaded_data = Union[Dict[Hashable, Any], List[Any], None]
 self.loader = loader

 super().__init__(name, path, **kwargs)

 def _get_parent(self) -> Dict[str, Any]:
 """
 Get the parent of the given key by its selector.

 :return: Return the parent if there is any
 :rtype: Dict[str, Any]
 """

 # Get the parent for modifications. If there is no parent,
 # then the parent is the document root
 return self.get_by_selector(self.loaded_data, self.split_key[:-1])

 def _write_dump(self, data: Any, delete: bool = False) -> None:
 """
 This is a dummy class which should be overridden. This method
 does nothing.

 :param data: The modified data
 :type data: :class:``hammurabi.rules.mixins.Any``

 :param delete: Indicate if the key should be deleted
 :type delete: bool
 """

[docs] def pre_task_hook(self) -> None:
 """
 Parse the file for later use.
 """

 logging.debug('Parsing "%s" file', self.param)
 self.loaded_data = self.loader(self.param.read_text())

[docs] @abstractmethod
 def task(self) -> Path:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

[docs]class DictKeyExists(SinglePathDictParsedRule, ABC):
 """
 Ensure that the given key exists. If needed, the rule will create a key with the
 given name, and optionally the specified value. In case the value is set, the value
 will be assigned to the key. If no value is set, the key will be created with an empty
 value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar
 >>> from hammurabi.rules.dictionaries import DictKeyExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DictKeyExists(
 >>> name="Ensure service descriptor has stack",
 >>> path=Path("./service.dictionary"),
 >>> key="stack",
 >>> value="my-awesome-stack",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 Compared to :mod:`hammurabi.rules.text.LineExists`, this rule is NOT able to add a
 key before or after a match.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 key: str = "",
 value: Union[None, list, dict, str, int, float] = None,
 **kwargs,
) -> None:
 self.value = value
 super().__init__(name, path, key, **kwargs)

[docs] def task(self) -> Path:
 """
 Ensure that the given key exists in the parsed file. If needed, create the
 key with the given name, and optionally the specified value.

 :return: Return the input path as an output
 :rtype: Path
 """

 parent = self._get_parent()

 logging.debug(
 'Set default value "%s" for "%s" if no value set', self.key_name, self.value
)
 inserted = parent.setdefault(self.key_name, self.value)

 # Only write the changes if we did any change
 if inserted == parent[self.key_name]:
 self._write_dump(inserted)

 return self.param

[docs]class DictKeyNotExists(SinglePathDictParsedRule, ABC):
 """
 Ensure that the given key not exists. If needed, the rule will remove a key with the
 given name, including its value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar
 >>> from hammurabi.rules.dictionaries import DictKeyNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DictKeyNotExists(
 >>> name="Ensure outdated_key is removed",
 >>> path=Path("./service.dictionary"),
 >>> key="outdated_key",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def task(self) -> Path:
 """
 Ensure that the given key does not exists in the parsed file.

 :return: Return the input path as an output
 :rtype: Path
 """

 parent = self._get_parent()

 if self.key_name in parent.keys():
 logging.debug('Removing key "%s"', self.key_name)
 parent.pop(self.key_name)
 self._write_dump(parent, delete=True)

 return self.param

[docs]class DictKeyRenamed(SinglePathDictParsedRule, ABC):
 """
 Ensure that the given key is renamed. In case the key can not be found,
 a ``LookupError`` exception will be raised to stop the execution. The
 execution must be stopped at this point, because if other rules depending
 on the rename they will fail otherwise.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar
 >>> from hammurabi.rules.dictionaries import DictKeyRenamed
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DictKeyRenamed(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.dictionary"),
 >>> key="development.depends_on",
 >>> value="dependencies",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 key: str = "",
 new_name: str = "",
 **kwargs,
) -> None:
 self.new_name = self.validate(new_name, required=True)
 super().__init__(name, path, key, **kwargs)

[docs] def task(self) -> Path:
 """
 Ensure that the given key is renamed. In case the key can not be found,
 a ``LookupError`` exception will be raised to stop the execution. The
 execution must be stopped at this point, because if other rules depending
 on the rename they will fail otherwise.

 :raises: ``LookupError`` raised if no key can be renamed or both the new and
 old keys are in the config file
 :return: Return the input path as an output
 :rtype: Path
 """

 parent = self._get_parent()

 has_old_key = self.key_name in parent
 has_new_key = self.new_name in parent

 if has_old_key and has_new_key:
 raise LookupError(f'Both "{self.key_name}" and "{self.new_name}" set')

 if has_new_key:
 return self.param

 if not has_old_key:
 raise LookupError(f'No matching key for "{self.selector}"')

 logging.debug('Renaming key from "%s" to "%s"', self.key_name, self.new_name)
 parent[self.new_name] = deepcopy(parent[self.key_name])
 parent.pop(self.key_name)

 # Delete is True since we need to delete the old key
 self._write_dump(parent, delete=True)

 return self.param

[docs]class DictValueExists(SinglePathDictParsedRule, ABC):
 """
 Ensure that the given key has the expected value(s). In case the key cannot
 be found, a ``LookupError`` exception will be raised to stop the execution.

 This rule is special in the way that the value can be almost anything. For
 more information please read the warning below.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar
 >>> from hammurabi.rules.dictionaries import DictValueExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DictValueExists(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.dictionary"),
 >>> key="development.dependencies",
 >>> value=["service1", "service2", "service3"],
 >>>),
 >>> # Or
 >>> DictValueExists(
 >>> name="Add infra alerting to existing alerting components",
 >>> path=Path("./service.dictionary"),
 >>> key="development.alerting",
 >>> value={"infra": "#slack-channel-2"},
 >>>),
 >>> # Or
 >>> DictValueExists(
 >>> name="Add support info",
 >>> path=Path("./service.dictionary"),
 >>> key="development.supported",
 >>> value=True,
 >>>),
 >>> # Or even
 >>> DictValueExists(
 >>> name="Make sure that no development branch is set",
 >>> path=Path("./service.dictionary"),
 >>> key="development.branch",
 >>> value=None,
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 Since the value can be anything from ``None`` to a list of lists, and
 rule piping passes the 1st argument (``path``) to the next rule the ``value``
 parameter can not be defined in ``__init__`` before the ``path``. Hence
 the ``value`` parameter must have a default value. The default value is
 set to ``None``, which translates to the following:

 Using the ``DictValueExists`` rule and not assigning value to ``value``
 parameter will set the matching ``key``'s value to `None`` by default in
 the document.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 key: str = "",
 value: Union[None, list, dict, str, int, float] = None,
 **kwargs,
) -> None:
 self.value = value
 super().__init__(name, path, key, **kwargs)

 def _update_simple_value(self, parent: Dict[str, Any]) -> None:
 """
 Update the parent key's value by a simple value.

 :param parent: Parent key of the dict
 :type parent: Dict[str, Any]
 """

 logging.debug('Setting "%s" to "%s"', self.key_name, self.value)
 parent[self.key_name] = self.value

 def _update_list_value(self, parent: Dict[str, Any]) -> None:
 """
 Update the parent key's value which is an array. Depending on the new
 value's type, the exiting list will be extended or the new value will
 be appended to the list.

 :param parent: Parent key of the dict
 :type parent: Dict[str, Any]
 """

 if isinstance(self.value, list):
 logging.debug('Extending "%s" by "%s"', self.key_name, self.value)
 parent[self.key_name].extend(self.value)
 else:
 logging.debug('Appending "%s" to "%s"', self.value, self.key_name)
 parent[self.key_name].append(self.value)

 def _update_dict_value(self, parent: Dict[str, Any]) -> None:
 """
 Update the parent key's value which is a dict.

 :param parent: Parent key of the dict
 :type parent: Dict[str, Any]
 """

 logging.debug('Updating "%s" by "%s"', self.key_name, self.value)
 parent[self.key_name].update(self.value)

[docs] def task(self) -> Path:
 """
 Ensure that the given key has the expected value(s). In case the key cannot
 be found, a ``LookupError`` exception will be raised to stop the execution.

 .. warning::

 Since the value can be anything from ``None`` to a list of lists, and
 rule piping passes the 1st argument (``path``) to the next rule the ``value``
 parameter can not be defined in ``__init__`` before the ``path``. Hence
 the ``value`` parameter must have a default value. The default value is
 set to ``None``, which translates to the following:

 Using the ``DictValueExists`` rule and not assigning value to ``value``
 parameter will set the matching ``key``'s value to `None`` by default in
 the document.

 :raises: ``LookupError`` raised if no key can be renamed or both the new and
 old keys are in the config file
 :return: Return the input path as an output
 :rtype: Path
 """

 parent = self._get_parent()
 value = parent.get(self.key_name)

 is_list_value = isinstance(value, list)
 is_dict_value = isinstance(value, dict)

 logging.debug('Adding value "%s" to key "%s"', self.value, self.key_name)

 if self.value is None or (not is_list_value and not is_dict_value):
 self._update_simple_value(parent)
 elif is_list_value:
 self._update_list_value(parent)
 elif is_dict_value:
 self._update_dict_value(parent)

 self._write_dump(parent[self.key_name])
 return self.param

[docs]class DictValueNotExists(SinglePathDictParsedRule, ABC):
 """
 Ensure that the key has no value given. In case the key cannot be found,
 a ``LookupError`` exception will be raised to stop the execution.

 Compared to ``hammurabi.rules.dictionaries.DictValueExists``, this rule can only
 accept simple value for its ``value`` parameter. No ``list``, ``dict``, or
 ``None`` can be used.

 Based on the key's value's type if the value contains (or equals for simple types)
 value provided in the ``value`` parameter the value is:

 1. Set to None (if the key's value's type is not a dict or list)
 2. Removed from the list (if the key's value's type is a list)
 3. Removed from the dict (if the key's value's type is a dict)

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar
 >>> from hammurabi.rules.dictionaries import DictValueNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DictValueNotExists(
 >>> name="Remove decommissioned service from dependencies",
 >>> path=Path("./service.dictionary"),
 >>> key="development.dependencies",
 >>> value="service4",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 key: str = "",
 value: Union[str, int, float] = None,
 **kwargs,
) -> None:
 self.value = self.validate(value, required=True)
 super().__init__(name, path, key, **kwargs)

[docs] def task(self) -> Path:
 """
 Ensure that the key has no value given. In case the key cannot be found,
 a ``LookupError`` exception will be raised to stop the execution.

 Based on the key's value's type if the value contains (or equals for simple types)
 value provided in the ``value`` parameter the value is:
 1. Set to None (if the key's value's type is not a dict or list)
 2. Removed from the list (if the key's value's type is a list)
 3. Removed from the dict (if the key's value's type is a dict)

 :return: Return the input path as an output
 :rtype: Path
 """

 parent = self._get_parent()

 value = parent.get(self.key_name)
 value_contains = value and self.value in value

 if self.key_name not in parent:
 return self.param

 write_needed = False
 logging.debug('Removing "%s" from key "%s"', self.value, self.key_name)

 if self.value == value:
 parent[self.key_name] = None
 write_needed = True
 elif isinstance(value, list) and value_contains:
 parent[self.key_name].remove(self.value)
 write_needed = True
 elif isinstance(value, dict) and value_contains:
 del parent[self.key_name][self.value]
 write_needed = True

 if write_needed:
 self._write_dump(parent[self.key_name])

 return self.param

 Source code for hammurabi.rules.directories

"""
Directories module contains directory specific manipulation rules. Please
note that those rules which can be used for files and directories are
located in other modules like :mod:`hammurabi.rules.operations` or
:mod:`hammurabi.rules.attributes`.
"""

import logging
import os
from pathlib import Path
import shutil

from hammurabi.rules.common import SinglePathRule

[docs]class DirectoryExists(SinglePathRule):
 """
 Ensure that a directory exists. If the directory does not exists,
 make sure the directory is created.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, DirectoryExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DirectoryExists(
 >>> name="Create secrets directory",
 >>> path=Path("./secrets")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def task(self) -> Path:
 """
 Create the given directory if not exists.

 :return: Return the input path as an output
 :rtype: Path
 """

 logging.debug('Creating directory "%s" if not exists', str(self.param))
 self.param.mkdir()

 return self.param

[docs]class DirectoryNotExists(SinglePathRule):
 """
 Ensure that the given directory does not exists. In case the directory
 contains any file or sub-directory, those will be removed too.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, DirectoryNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DirectoryNotExists(
 >>> name="Remove unnecessary directory",
 >>> path=Path("./temp")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def post_task_hook(self):
 """
 Remove the given directory from git index.
 """

 self.git_remove(self.param)

[docs] def task(self) -> Path:
 """
 Remove the given directory.

 :return: Return the input path as an output
 :rtype: Path
 """

 if self.param.exists():
 logging.debug('Removing directory "%s"', str(self.param))
 shutil.rmtree(self.param)

 return self.param

[docs]class DirectoryEmptied(SinglePathRule):
 """
 Ensure that the given directory's content is removed. Please note the
 difference between emptying a directory and recreating it. The latter
 results in lost ACLs, permissions and modes.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, DirectoryEmptied
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> DirectoryEmptied(
 >>> name="Empty results directory",
 >>> path=Path("./test-results")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def task(self) -> Path:
 """
 Iterate through the entries of the given directory and remove them.
 If an entry is a file simply remove it, otherwise remove the whole
 subdirectory and its content.

 :return: Return the input path as an output
 :rtype: Path
 """

 with os.scandir(self.param) as entries:
 for entry in map(Path, entries):
 if entry.is_file() or entry.is_symlink():
 logging.debug('Removing file "%s"', str(entry))
 entry.unlink()

 elif entry.is_dir():
 logging.debug('Removing directory "%s"', str(entry))
 shutil.rmtree(entry)

 return self.param

 Source code for hammurabi.rules.files

"""
Files module contains file specific manipulation rules. Please note that
those rules which can be used for files and directories are located in
other modules like :mod:`hammurabi.rules.operations` or
:mod:`hammurabi.rules.attributes`.
"""

import logging
from pathlib import Path
from typing import Iterable

from hammurabi.rules.common import MultiplePathRule, SinglePathRule

[docs]class FileExists(SinglePathRule):
 """
 Ensure that a file exists. If the file does not exists,
 make sure the file is created.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, FileExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> FileExists(
 >>> name="Create service descriptor",
 >>> path=Path("./service.yaml")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def task(self) -> Path:
 """
 If the match file not exists, create the file to make sure we
 can manipulate it.

 :return: The created/existing file's path
 :rtype: Path
 """

 logging.debug('Creating file "%s" if not exists', str(self.param))
 self.param.touch()

 return self.param

[docs]class FilesExist(MultiplePathRule):
 """
 Ensure that all files exists. If the files does not exists,
 make sure the files are created.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, FilesExist
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> FilesExist(
 >>> name="Create test files",
 >>> paths=[
 >>> Path("./file_1"),
 >>> Path("./file_2"),
 >>> Path("./file_3"),
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def task(self) -> Iterable[Path]:
 """
 If the match files not exist, create the files to make sure we
 can manipulate them.

 :return: The created/existing files' path
 :rtype: Iterable[Path]
 """

 for path in self.param:
 logging.debug('Creating file "%s" if not exists', str(path))
 path.touch()

 return self.param

[docs]class FileNotExists(SinglePathRule):
 """
 Ensure that the given file does not exists. If the file exists
 remove it, otherwise do nothing and return the original path.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, FileNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> FileNotExists(
 >>> name="Remove unused file",
 >>> path=Path("./debug.yaml")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def post_task_hook(self):
 """
 Remove the given file from git index.
 """

 self.git_remove(self.param)

[docs] def task(self) -> Path:
 """
 Remove the given file if exists, otherwise do nothing and
 return the original path.

 :return: Return the removed file's path
 :rtype: Path
 """

 if self.param.exists():
 logging.debug('Removing "%s"', str(self.param))
 self.param.unlink()

 return self.param

[docs]class FilesNotExist(MultiplePathRule):
 """
 Ensure that the given files does not exist. If the files exist
 remove them, otherwise do nothing and return the original paths.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, FilesNotExist
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> FilesNotExist(
 >>> name="Remove several files",
 >>> paths=[
 >>> Path("./file_1"),
 >>> Path("./file_2"),
 >>> Path("./file_3"),
 >>>]
 >>>),
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def post_task_hook(self):
 """
 Remove the given files from git index.
 """

 for path in self.param:
 self.git_remove(path)

[docs] def task(self) -> Iterable[Path]:
 """
 Remove all existing files.

 :return: Return the removed files' paths
 :rtype: Iterable[Path]
 """

 for path in self.param:
 if path.exists():
 logging.debug('Removing "%s"', str(path))
 path.unlink()

 return self.param

[docs]class FileEmptied(SinglePathRule):
 """
 Remove the content of the given file, but keep the file. Please note the
 difference between emptying a file and recreating it. The latter
 results in lost ACLs, permissions and modes.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, FileEmptied
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> FileEmptied(
 >>> name="Empty the check log file",
 >>> path=Path("/var/log/service/check.log")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs] def task(self) -> Path:
 """
 Remove the content of the given file. If the file does not exists
 this rule will create the file without content.

 :return: Return the emptied/created file's path
 :rtype: Path
 """

 logging.debug('Emptying "%s"', str(self.param))
 self.param.write_text("")

 return self.param

 Source code for hammurabi.rules.ini

"""
Ini module is an extension for text rules tailor made for .ini/.cfg files.
The main difference lies in the way it works. First, the .ini/.cfg file is
parsed, then the modifications are made on the already parsed file.
"""

from abc import abstractmethod
import logging
from pathlib import Path
from typing import Any, Iterable, Optional, Tuple

from configupdater import ConfigUpdater # type: ignore
from configupdater.configupdater import Section # type: ignore

from hammurabi.rules.common import SinglePathRule

[docs]class SingleConfigFileRule(SinglePathRule):
 """
 Extend :class:`hammurabi.rules.base.Rule` to handle parsed content
 manipulations on a single file.

 .. warning::

 This rule requires the ``ini`` extra to be installed.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 section: Optional[str] = None,
 **kwargs,
) -> None:
 self.section = self.validate(section, required=True)
 self.updater = ConfigUpdater()

 super().__init__(name, path, **kwargs)

[docs] def pre_task_hook(self) -> None:
 """
 Parse the configuration file for later use.
 """

 logging.debug('Parsing "%s" configuration file', self.param)
 self.updater.read(self.param)

[docs] @abstractmethod
 def task(self) -> Any:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

[docs]class SectionExists(SingleConfigFileRule):
 """
 Ensure that the given config section exists. If needed, the rule will create
 a config section with the given name, and optionally the specified options. In
 case options are set, the config options will be assigned to that config sections.

 Similarly to :mod:`hammurabi.rules.text.LineExists`, this rule is able to add a
 section before or after a match section. The limitation compared to ``LineExists``
 is that the ``SectionExists`` rule is only able to add the new entry exactly before
 or after its match.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, SectionExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> SectionExists(
 >>> name="Ensure section exists",
 >>> path=Path("./config.ini"),
 >>> section="polling",
 >>> match="add_after_me",
 >>> options=(
 >>> ("interval", "2s"),
 >>> ("abort_on_error", True),
 >>>),
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``ini`` extra to be installed.

 .. warning::

 When using ``match`` be aware that partial matches will be recognized
 as well. This means you must be as strict with regular expressions as
 it is needed. Example of a partial match:

 >>> import re
 >>> pattern = re.compile(r"apple")
 >>> text = "appletree"
 >>> pattern.match(text).group()
 >>> 'apple'

 .. warning::

 When ``options`` parameter is set, make sure you are using an iterable tuple.
 The option keys must be strings, but there is no limitation for the value. It can
 be set to anything what the parser can handle. For more information on the parser,
 please visit the documentation of configupdater_.

 .. _configupdater: https://configupdater.readthedocs.io/en/latest/
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 match: Optional[str] = None,
 options: Iterable[Tuple[str, Any]] = (),
 add_after: bool = True,
 **kwargs,
) -> None:
 self.match = match
 self.options = options
 self.add_after = add_after

 self.space = 1

 super().__init__(name, path, **kwargs)

 def __get_match(self) -> Optional[Section]:
 """
 Get the match of the insert. If the match is not
 specified directly add as the last section.
 """

 if not self.updater.sections():
 return None

 if self.updater.has_section(self.match):
 return self.updater[self.match]

 return self.updater.section_blocks()[-1]

 def __add_section(self) -> None:
 """
 Add the desired section before or after the match section if exists.
 In case the match section not exists, so the file was empty, simply
 add the new section.
 """

 logging.debug('Adding section "%s"', self.section)

 match = self.__get_match()

 if match is not None and self.add_after:
 match.add_after.space(self.space).section(self.section)
 elif match is not None and not self.add_after:
 match.add_before.section(self.section)
 else:
 self.updater.add_section(self.section)

 def __add_options(self) -> None:
 """
 Add options to the given section.
 """

 for option, value in self.options:
 self.updater[self.section][option] = value

[docs] def task(self) -> Path:
 """
 Ensure that the given config section exists. If needed, create a config section with
 the given name, and optionally the specified options.

 :return: Return the input path as an output
 :rtype: Path
 """

 if not self.updater.has_section(self.section):
 self.__add_section()

 self.__add_options()

 with self.param.open("w") as file:
 self.updater.write(file)

 return self.param

[docs]class SectionNotExists(SingleConfigFileRule):
 """
 Make sure that the given file not contains the specified line. When a section
 removed, all the options belonging to it will be removed too.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, SectionNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> SectionNotExists(
 >>> name="Ensure section removed",
 >>> path=Path("./config.ini"),
 >>> section="invalid",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``ini`` extra to be installed.
 """

[docs] def task(self) -> Path:
 """
 Remove the given section including its options from the config file.

 :return: Return the input path as an output
 :rtype: Path
 """

 if self.updater.has_section(self.section):

 logging.debug('Removing section "%s"', self.section)
 self.updater.remove_section(self.section)

 with self.param.open("w") as file:
 self.updater.write(file)

 return self.param

[docs]class SectionRenamed(SingleConfigFileRule):
 """
 Ensure that a section is renamed. None of its options will be changed.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, SectionRenamed
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> SectionRenamed(
 >>> name="Ensure section renamed",
 >>> path=Path("./config.ini"),
 >>> section="polling",
 >>> new_name="fetching",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``ini`` extra to be installed.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 new_name: Optional[str] = None,
 **kwargs,
) -> None:
 self.new_name = self.validate(new_name, required=True)

 super().__init__(name, path, **kwargs)

[docs] def task(self) -> Path:
 """
 Rename the given section to a new name. None of its options will be
 changed. In case a section can not be found, a ``LookupError`` exception
 will be raised to stop the execution. The execution must be stopped at
 this point, because if other rules depending on the rename they will fail
 otherwise.

 :raises: ``LookupError`` if we can not decide or can not find what should be renamed
 :return: Return the input path as an output
 :rtype: Path
 """

 has_old_section = self.updater.has_section(self.section)
 has_new_section = self.updater.has_section(self.new_name)

 if has_old_section and has_new_section:
 raise LookupError(f'Both "{self.section}" and "{self.new_name}" set')

 if has_new_section:
 return self.param

 if not has_old_section:
 raise LookupError(f'No matching section for "{self.section}"')

 logging.debug('Renaming "%s" to "%s"', self.section, self.new_name)
 self.updater[self.section].name = self.new_name

 with self.param.open("w") as file:
 self.updater.write(file)

 return self.param

[docs]class OptionsExist(SingleConfigFileRule):
 """
 Ensure that the given config option exists. If needed, the rule will create
 a config option with the given value. In case the ``force_value`` parameter is
 set to True, the original values will be replaced by the give ones.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, OptionsExist
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> OptionsExist(
 >>> name="Ensure options are changed",
 >>> path=Path("./config.ini"),
 >>> section="fetching",
 >>> options=(
 >>> ("interval", "2s"),
 >>> ("abort_on_error", True),
 >>>),
 >>> force_value=True,
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``ini`` extra to be installed.

 .. warning::

 When using the ``force_value`` parameter, please note that all the existing
 option values will be replaced by those set in ``options`` parameter.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 options: Iterable[Tuple[str, Any]] = None,
 force_value: bool = False,
 **kwargs,
) -> None:
 self.options = self.validate(options, required=True)
 self.force_value = force_value

 super().__init__(name, path, **kwargs)

[docs] def task(self) -> Path:
 """
 Remove one or more option from a section. In case a section can not be
 found, a ``LookupError`` exception will be raised to stop the execution.
 The execution must be stopped at this point, because if dependant rules
 will fail otherwise.

 :raises: ``LookupError`` raised if no section can be renamed
 :return: Return the input path as an output
 :rtype: Path
 """

 if not self.updater.has_section(self.section):
 raise LookupError(f'No matching section for "{self.section}"')

 for option, value in self.options:
 if not self.updater.has_option(self.section, option) or self.force_value:
 logging.debug('Adding option "%s" = "%s"', option, value)
 self.updater[self.section][option] = value

 with self.param.open("w") as file:
 self.updater.write(file)

 return self.param

[docs]class OptionsNotExist(SingleConfigFileRule):
 """
 Remove one or more option from a section.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, OptionsNotExist
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> OptionsNotExist(
 >>> name="Ensure options are removed",
 >>> path=Path("./config.ini"),
 >>> section="invalid",
 >>> options=(
 >>> "remove",
 >>> "me",
 >>> "please",
 >>>)
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``ini`` extra to be installed.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 options: Iterable[str] = (),
 **kwargs,
) -> None:
 self.options = self.validate(options, required=True)

 super().__init__(name, path, **kwargs)

[docs] def task(self) -> Path:
 """
 Remove one or more option from a section. In case a section can not be
 found, a ``LookupError`` exception will be raised to stop the execution.
 The execution must be stopped at this point, because if dependant rules
 will fail otherwise.

 :raises: ``LookupError`` raised if no section can be renamed
 :return: Return the input path as an output
 :rtype: Path
 """

 if not self.updater.has_section(self.section):
 raise LookupError(f'No matching section for "{self.section}"')

 for option in self.options:
 logging.debug('Removing option "%s"', option)
 self.updater.remove_option(self.section, option)

 with self.param.open("w") as file:
 self.updater.write(file)

 return self.param

[docs]class OptionRenamed(SingleConfigFileRule):
 """
 Ensure that an option of a section is renamed.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, OptionRenamed
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> OptionRenamed(
 >>> name="Rename an option",
 >>> path=Path("./config.ini"),
 >>> section="my_section",
 >>> option="typo",
 >>> new_name="correct",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``ini`` extra to be installed.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 option: Optional[str] = None,
 new_name: Optional[str] = None,
 **kwargs,
) -> None:
 self.option = self.validate(option, required=True)
 self.new_name = self.validate(new_name, required=True)

 super().__init__(name, path, **kwargs)

[docs] def task(self) -> Path:
 """
 Rename an option of a section. In case a section can not be
 found, a ``LookupError`` exception will be raised to stop the execution.
 The execution must be stopped at this point, because if dependant rules
 will fail otherwise.

 :raises: ``LookupError`` raised if no section found or both the old and new
 option names are found
 :return: Return the input path as an output
 :rtype: Path
 """

 if not self.updater.has_section(self.section):
 raise LookupError(f'No matching section for "{self.section}"')

 has_old_option = self.updater[self.section].get(self.option)
 has_new_option = self.updater[self.section].get(self.new_name)

 if has_old_option and has_new_option:
 raise LookupError(f'Both "{self.option}" and "{self.new_name}" set')

 if has_new_option:
 return self.param

 if not has_old_option:
 raise LookupError(f'No matching option for "{self.section}"')

 logging.debug(
 'Replacing option "%s" with "%s"', str(self.option), self.new_name
)

 self.updater[self.section][self.option].name = self.new_name

 with self.param.open("w") as file:
 self.updater.write(file)

 return self.param

 Source code for hammurabi.rules.json

"""
This module adds Json file support. Json module is an extension for text rules
tailor made for .json files. The main difference lies in the way it works.
First, the .json file is parsed, then the modifications are made on the
already parsed file.
"""

from abc import abstractmethod
from pathlib import Path
from typing import Any, Optional

from hammurabi.rules.dictionaries import (
 DictKeyExists,
 DictKeyNotExists,
 DictKeyRenamed,
 DictValueExists,
 DictValueNotExists,
 SinglePathDictParsedRule,
)

try:
 import ujson as json
except ImportError:
 import json # type: ignore

[docs]class SingleJsonFileRule(SinglePathDictParsedRule):
 """
 Extend :class:`hammurabi.rules.dictionaries.SinglePathDictParsedRule`
 to handle parsed content manipulations on a single Json file.
 """

 def __init__(
 self, name: str, path: Optional[Path] = None, key: str = "", **kwargs
) -> None:
 super().__init__(name, path, key, loader=json.loads, **kwargs)

 def _write_dump(self, data: Any, delete: bool = False) -> None:
 """
 Helper function to write the dump into file.

 :param data: The modified data
 :type data: :class:``hammurabi.rules.mixins.Any`

 :param delete: Indicate if the key should be deleted
 :type delete: bool
 """

 self.param.write_text(
 json.dumps(
 self.set_by_selector(self.loaded_data, self.split_key, data, delete)
)
)

[docs] @abstractmethod
 def task(self) -> Path:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

[docs]class JsonKeyExists(DictKeyExists, SingleJsonFileRule):
 """
 Ensure that the given key exists. If needed, the rule will create a key with the
 given name, and optionally the specified value. In case the value is set, the value
 will be assigned to the key. If no value is set, the key will be created with an empty
 value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, JsonKeyExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> JsonKeyExists(
 >>> name="Ensure service descriptor has stack",
 >>> path=Path("./service.json"),
 >>> key="stack",
 >>> value="my-awesome-stack",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 Compared to :mod:`hammurabi.rules.text.LineExists`, this rule is NOT able to add a
 key before or after a match.
 """

[docs]class JsonKeyNotExists(DictKeyNotExists, SingleJsonFileRule):
 """
 Ensure that the given key not exists. If needed, the rule will remove a key with the
 given name, including its value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, JsonKeyNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> JsonKeyNotExists(
 >>> name="Ensure outdated_key is removed",
 >>> path=Path("./service.json"),
 >>> key="outdated_key",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs]class JsonKeyRenamed(DictKeyRenamed, SingleJsonFileRule):
 """
 Ensure that the given key is renamed. In case the key can not be found,
 a ``LookupError`` exception will be raised to stop the execution. The
 execution must be stopped at this point, because if other rules depending
 on the rename they will fail otherwise.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, JsonKeyRenamed
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> JsonKeyRenamed(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.json"),
 >>> key="development.depends_on",
 >>> value="dependencies",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs]class JsonValueExists(DictValueExists, SingleJsonFileRule):
 """
 Ensure that the given key has the expected value(s). In case the key cannot
 be found, a ``LookupError`` exception will be raised to stop the execution.

 This rule is special in the way that the value can be almost anything. For
 more information please read the warning below.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, JsonValueExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> JsonValueExists(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.json"),
 >>> key="development.dependencies",
 >>> value=["service1", "service2", "service3"],
 >>>),
 >>> # Or
 >>> JsonValueExists(
 >>> name="Add infra alerting to existing alerting components",
 >>> path=Path("./service.json"),
 >>> key="development.alerting",
 >>> value={"infra": "#slack-channel-2"},
 >>>),
 >>> # Or
 >>> JsonValueExists(
 >>> name="Add support info",
 >>> path=Path("./service.json"),
 >>> key="development.supported",
 >>> value=True,
 >>>),
 >>> # Or even
 >>> JsonValueExists(
 >>> name="Make sure that no development branch is set",
 >>> path=Path("./service.json"),
 >>> key="development.branch",
 >>> value=None,
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 Since the value can be anything from ``None`` to a list of lists, and
 rule piping passes the 1st argument (``path``) to the next rule the ``value``
 parameter can not be defined in ``__init__`` before the ``path``. Hence
 the ``value`` parameter must have a default value. The default value is
 set to ``None``, which translates to the following:

 Using the ``JsonValueExists`` rule and not assigning value to ``value``
 parameter will set the matching ``key``'s value to `None`` by default in
 the document.
 """

[docs]class JsonValueNotExists(DictValueNotExists, SingleJsonFileRule):
 """
 Ensure that the key has no value given. In case the key cannot be found,
 a ``LookupError`` exception will be raised to stop the execution.

 Compared to ``hammurabi.rules.json.JsonValueExists``, this rule can only
 accept simple value for its ``value`` parameter. No ``list``, ``dict``, or
 ``None`` can be used.

 Based on the key's value's type if the value contains (or equals for simple types)
 value provided in the ``value`` parameter the value is:

 1. Set to None (if the key's value's type is not a dict or list)
 2. Removed from the list (if the key's value's type is a list)
 3. Removed from the dict (if the key's value's type is a dict)

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, JsonValueNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> JsonValueNotExists(
 >>> name="Remove decommissioned service from dependencies",
 >>> path=Path("./service.json"),
 >>> key="development.dependencies",
 >>> value="service4",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 Source code for hammurabi.rules.mixins

from typing import Any, Dict, List, Union

[docs]class SelectorMixin: # pylint: disable=too-few-public-methods
 """
 This mixin contains the helper function to get a value from dict by
 a css selector like selector path. (``.example.path.to.key``)
 """

 @staticmethod
 def __normalize_key_path(key_path: Union[str, List[str]]) -> List[str]:
 """
 Normalize the key_path and make sure we return the list
 representation of it.

 :param key_path: Path to the key in a selector format
 (``.path.to.the.key`` or ``["path", "to", "the", "key"]``)
 :type key_path: Union[str, List[str]]

 :return: List representation of key type
 :rtype: List[str]
 """

 if isinstance(key_path, str):
 key_path = key_path.split(".")

 return list(filter(lambda key: key, key_path))

[docs] def get_by_selector(
 self, data: Any, key_path: Union[str, List[str]]
) -> Dict[str, Any]:
 """
 Get a key's value by a selector and traverse the path.

 :param data: The loaded Yaml data into dict
 :type data: :class:`hammurabi.rules.mixins.Any`

 :param key_path: Path to the key in a selector format
 (``.path.to.the.key`` or ``["path", "to", "the", "key"]``)
 :type key_path: Union[str, List[str]]

 :return: Return the value belonging to the selector
 :rtype: :class:`hammurabi.rules.mixins.Any`
 """

 if not data:
 return dict()

 key_path = self.__normalize_key_path(key_path)
 entry = data or dict()

 for item in key_path:
 entry = entry.get(item, None)
 if not entry:
 return dict()

 return entry

[docs] def set_by_selector(
 self,
 loaded_data: Any,
 key_path: Union[str, List[str]],
 value: Union[None, list, dict, str, int, float],
 delete: bool = False,
) -> Any:
 """
 Set a value by the key selector and traverse the path.

 :param loaded_data: The loaded Yaml data into dict
 :type loaded_data: :class:`hammurabi.rules.mixins.Any`

 :param key_path: Path to the key in a selector format
 (``.path.to.the.key`` or ``["path", "to", "the", "key"]``)
 :type key_path: Union[str, List[str]]

 :param value: The value set for the key
 :type value: Union[None, list, dict, str, int, float]

 :param delete: Indicate if the key should be deleted
 :type delete: bool

 :return: The modified Yaml data
 :rtype: :class:`hammurabi.rules.mixins.Any`
 """

 key_path = self.__normalize_key_path(key_path)
 data: Dict[str, Any] = loaded_data or dict()

 entry = data

 for item in key_path[:-1]:
 current = entry.get(item)

 if current and not isinstance(current, dict):
 entry[item] = {}

 entry = entry.setdefault(item, {})

 if not delete:
 entry[key_path[-1]] = value

 return data

 Source code for hammurabi.rules.operations

"""
Operations module contains common file/directory operation which can be
handy when need to move, rename or copy files.
"""

import logging
from pathlib import Path
import shutil
from typing import Optional

from hammurabi.rules.common import SinglePathRule

[docs]class Moved(SinglePathRule):
 """
 Move a file or directory from "A" to "B".

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Moved
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Moved(
 >>> name="Move pyproject.toml to its place",
 >>> path=Path("/tmp/generated/pyproject.toml.template"),
 >>> destination=Path("./pyproject.toml"), # Notice the rename!
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 destination: Optional[Path] = None,
 **kwargs,
) -> None:
 self.destination = self.validate(destination, required=True)
 super().__init__(name, path, **kwargs)

[docs] def post_task_hook(self):
 """
 Add both the new and old git objects.
 """

 self.git_remove(self.param)
 self.git_add(self.destination)

[docs] def task(self) -> Path:
 """
 Move the given path to the destination. In case the file got a
 new name when destination is provided, the file/directory will
 be moved to its new place with its new name.

 :return: Returns the new destination of the file/directory
 :rtype: Path
 """

 logging.debug('Moving "%s" to "%s"', str(self.param), str(self.destination))
 shutil.move(self.param, self.destination)

 return self.destination

[docs]class Renamed(Moved):
 """
 This rule is a shortcut for :class:`hammurabi.rules.operations.Moved`.
 Instead of destination path a new name is required.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Renamed
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Renamed(
 >>> name="Rename pyproject.toml.bkp",
 >>> path=Path("/tmp/generated/pyproject.toml.bkp"),
 >>> new_name="pyproject.toml",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 new_name: Optional[str] = None,
 **kwargs,
) -> None:
 path_name: str = self.validate(new_name, required=True)
 destination = Path((path or self.param).parent, path_name)
 super().__init__(name, path, destination, **kwargs)

[docs]class Copied(SinglePathRule):
 """
 Ensure that the given file or directory is copied to the new path.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, Copied
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> Copied(
 >>> name="Create backup file",
 >>> path=Path("./service.yaml"),
 >>> destination=Path("./service.bkp.yaml")
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 destination: Optional[Path] = None,
 **kwargs,
) -> None:
 self.destination = self.validate(destination, required=True)
 super().__init__(name, path, **kwargs)

[docs] def post_task_hook(self):
 """
 Add the destination and not the original path.
 """

 self.git_add(self.destination)

[docs] def task(self) -> Path:
 """
 Copy the given file or directory to a new place.

 :return: Returns the path of the copied file/directory
 :rtype: Path
 """

 logging.debug('Copying "%s" to "%s"', str(self.param), str(self.destination))

 if self.param.is_dir():
 shutil.copytree(self.param, self.destination)
 else:
 shutil.copy2(self.param, self.destination)

 return self.destination

 Source code for hammurabi.rules.templates

"""
Templates module contains rules which are capable to create a new
file based on a Jinja2 template by rendering it.
"""

import logging
from pathlib import Path
from typing import Any, Dict, Optional

from jinja2 import Template

from hammurabi.rules.common import SinglePathRule

[docs]class TemplateRendered(SinglePathRule):
 """
 Render a file from a Jinja2 template. In case the destination
 file not exists, this rule will create it, otherwise the file will
 be overridden.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, TemplateRendered
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> TemplateRendered(
 >>> name="Create gunicorn config from template",
 >>> template=Path("/tmp/templates/gunicorn.conf.py"),
 >>> destination=Path("./gunicorn.conf.py"),
 >>> context={
 >>> "keepalive": 65
 >>> },
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``templating`` extra to be installed.
 """

 def __init__(
 self,
 name: str,
 template: Optional[Path] = None,
 destination: Optional[Path] = None,
 context: Optional[Dict[str, Any]] = None,
 **kwargs,
) -> None:
 self.destination: Path = self.validate(destination, required=True)
 self.context: Dict[str, Any] = context or dict()
 super().__init__(name, template, **kwargs)

[docs] def post_task_hook(self):
 """
 Add the destination and not the original path.
 """

 self.git_add(self.destination)

[docs] def task(self) -> Path:
 """
 Render a file from a Jinja2 template. In case the destination
 file not exists, this rule will create it, otherwise the file will
 be overridden.

 :return: Returns the path of the rendered file
 :rtype: Path
 """

 logging.debug('Rendering template "%s"', str(self.param))
 rendered = Template(self.param.read_text()).render(self.context)
 self.destination.write_text(rendered)

 return self.destination

 Source code for hammurabi.rules.text

"""
Text module contains simple but powerful general file content manipulations.
Combined with other simple rules like :class:`hammurabi.rules.files.FileExists`
or :class:`hammurabi.rules.attributes.ModeChanged` almost anything can be
achieved. Although any file's content can be changed using these rules, for
common file formats like ``ini``, ``yaml`` or ``json`` dedicated rules are
created.
"""

import logging
from pathlib import Path
import re
from typing import List, Optional, Tuple

from hammurabi.rules.common import SinglePathRule

[docs]class LineExists(SinglePathRule):
 """
 Make sure that the given file contains the required line. This rule is
 capable for inserting the expected text before or after the unique match
 text respecting the indentation of its context.

 The default behaviour is to insert the required text exactly after the
 match line, and respect its indentation. Please note that ``text``and
 ``match`` parameters are required.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, LineExists, IsLineNotExist
 >>>
 >>> gunicorn_config = Path("./gunicorn.conf.py")
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> LineExists(
 >>> name="Extend gunicorn config",
 >>> path=gunicorn_config,
 >>> text="keepalive = 65",
 >>> match=r"^bind.*",
 >>> preconditions=[
 >>> IsLineNotExist(path=gunicorn_config, criteria=r"^keepalive.*")
 >>>]
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 When using ``match`` be aware that partial matches will be recognized
 as well. This means you must be as strict with regular expressions as
 it is needed. Example of a partial match:

 >>> import re
 >>> pattern = re.compile(r"apple")
 >>> text = "appletree"
 >>> pattern.match(text).group()
 >>> 'apple'

 .. note::

 The indentation of the match text will be extracted by a simple
 regular expression. If a more complex regexp is required, please
 inherit from this class.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 text: Optional[str] = None,
 match: Optional[str] = None,
 position: int = 1,
 respect_indentation: bool = True,
 ensure_trailing_newline: bool = False,
 **kwargs,
) -> None:
 self.text = self.validate(text, required=True)
 self.match = re.compile(self.validate(match, required=True))
 self.position = position
 self.respect_indentation = respect_indentation

 self.indentation_pattern = re.compile(r"^\s+")
 self.ensure_trailing_newline = ensure_trailing_newline

 super().__init__(name, path, **kwargs)

 def __get_match(self, lines: List[str]) -> str:
 """
 Get the matching line from the content of the given file.
 In case the matching number of lines are more than one or no
 match found, an exception will be raised accordingly.

 :param lines: Content of the given file
 :type lines: List[str]

 :raises: ``LookupError`` if no matching line can be found for match

 :return: List of the matching line
 :rtype: str
 """

 match = list(filter(self.match.match, lines))

 if not match:
 raise LookupError(f'No matching line for "{self.match}"')

 return match.pop()

 def __get_lines_from_file(self) -> Tuple[List[str], bool]:
 """
 Get the lines from the given file. In case of the file is empty, then
 append the expected line.

 :return: Returns the parsed lines and an indicator if the file was empty
 :rtype: tuple
 """

 file_was_empty = False

 with self.param.open("r") as file:
 logging.debug('Reading from "%s"', str(self.param))
 lines: List[str] = file.read().splitlines()

 if self.ensure_trailing_newline and lines[-1].strip() != "":
 lines.append("")

 if not lines:
 logging.debug('Adding "%s" to "%s"', self.text, str(self.param))
 lines.append(self.text)
 file_was_empty = True

 return lines, file_was_empty

 def __write_content_to_file(self, lines: List[str]):
 """
 Write the extended content of the file back. When writing the lines it is
 important to watch out for the new line character at the end of every line.

 :param lines: The new content of the original file
 :type lines: List[str]
 """

 with self.param.open("w") as file:
 file.writelines((f"{line}\n" for line in lines))

 def __add_line(self, lines: List[str]) -> None:
 """
 Make sure that the expected line is added to the list
 of lines.

 :param lines: Lines read from the input file
 :type lines: List[str]
 """

 match = self.__get_match(lines)

 # Get the index of the element from the right
 match_index = len(lines) - lines[::-1].index(match) - 1

 insert_position = match_index + self.position

 logging.debug('Inserting "%s" to position "%d"', self.text, insert_position)

 indentation = self.indentation_pattern.match(lines[match_index])
 if self.respect_indentation and indentation:
 self.text = indentation.group() + self.text

 lines.insert(insert_position, self.text)

[docs] def task(self) -> Path:
 """
 Make sure that the given file contains the required line. This rule is
 capable for inserting the expected rule before or after the unique match
 text respecting the indentation of its context.

 :raises: ``LookupError``

 :return: Returns the path of the modified file
 :rtype: Path
 """

 lines, file_was_empty = self.__get_lines_from_file()

 if not file_was_empty:
 self.__add_line(lines)

 self.__write_content_to_file(lines)

 return self.param

[docs]class LineNotExists(SinglePathRule):
 """
 Make sure that the given file not contains the specified line.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, LineNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> LineNotExists(
 >>> name="Remove keepalive",
 >>> path=Path("./gunicorn.conf.py"),
 >>> text="keepalive = 65",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 text: Optional[str] = None,
 **kwargs,
) -> None:
 self.text = re.compile(self.validate(text, cast_to=str, required=True))

 super().__init__(name, path, **kwargs)

[docs] def task(self) -> Path:
 """
 Make sure that the given file not contains the specified line.

 :return: Returns the path of the modified file
 :rtype: Path
 """

 with self.param.open("r") as file:
 lines = file.read().splitlines()

 new_lines = list(filter(lambda l: not self.text.match(l), lines))

 if new_lines != lines:
 with self.param.open("w") as file:
 file.writelines((f"{line}\n" for line in new_lines))

 return self.param

[docs]class LineReplaced(SinglePathRule):
 """
 Make sure that the given text is replaced in the given file.

 The default behaviour is to replace the required text with the
 exact same indentation that the "match" line has. This behaviour
 can be turned off by setting the ``respect_indentation`` parameter
 to False. Please note that ``text`` and ``match`` parameters are
 required.

 Example usage:

 .. code-block:: python

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, LineReplaced
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> LineReplaced(
 >>> name="Replace typo using regex",
 >>> path=Path("./gunicorn.conf.py"),
 >>> text="keepalive = 65",
 >>> match=r"^kepalive.*",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The indentation of the `text` will be extracted by a simple
 regular expression. If a more complex regexp is required, please
 inherit from this class.

 .. warning::

 When using ``match`` be aware that partial matches will be recognized
 as well. This means you must be as strict with regular expressions as
 it is needed. Example of a partial match:

 >>> import re
 >>> pattern = re.compile(r"apple")
 >>> text = "appletree"
 >>> pattern.match(text).group()
 >>> 'apple'

 .. warning::

 This rule will replace all the matching lines in the given file.
 Make sure the given `match` regular expression is tested before
 the rule used against production code.
 """

 def __init__(
 self,
 name: str,
 path: Optional[Path] = None,
 text: Optional[str] = None,
 match: Optional[str] = None,
 respect_indentation: bool = True,
 **kwargs,
) -> None:
 self.text = self.validate(text, required=True)
 self.match = re.compile(self.validate(match, required=True))
 self.respect_indentation = respect_indentation

 self.indentation_pattern = re.compile(r"^\s+")

 super().__init__(name, path, **kwargs)

 def __get_lines_from_file(self) -> Tuple[List[str], bool]:
 """
 Get the lines from the given file.

 :return: Returns the parsed lines and an indicator if the file was empty
 :rtype: tuple
 """

 with self.param.open("r") as file:
 logging.debug('Reading from "%s"', str(self.param))
 lines = file.read().splitlines()

 return lines, not lines

 def __write_content_to_file(self, lines: List[str]):
 """
 Write the extended content of the file back. When writing the lines it is
 important to watch out for the new line character at the end of every line.

 :param lines: The new content of the original file
 :type lines: List[str]
 """

 with self.param.open("w") as file:
 file.writelines((f"{line}\n" for line in lines))

 def __replace_line(self, lines: List[str], match: str):
 """
 Replace the match texts with the given text.

 :param lines: The new content of the original file
 :type lines: List[str]

 :param match: The matching match in the given file's content
 :type match: str
 """

 match_index = lines.index(match)

 indentation = self.indentation_pattern.match(lines[match_index])
 if self.respect_indentation and indentation:
 self.text = indentation.group() + self.text

 lines[match_index] = self.text

[docs] def task(self) -> Path:
 """
 Make sure that the given text is replaced in the given file.

 :raises: ``LookupError`` if we can not decide or can not find what should be replaced
 :return: Returns the path of the modified file
 :rtype: Path
 """

 lines, _ = self.__get_lines_from_file()

 matches = list(filter(self.match.match, lines))
 text = list(filter(lambda l: l.strip() == self.text, lines))

 if matches and text:
 raise LookupError(f'Both "{self.match}" and "{self.text}" exists')

 if text:
 return self.param

 if not matches:
 raise LookupError(f'No matching line for "{self.match}"')

 for match in matches:
 self.__replace_line(lines, match)

 self.__write_content_to_file(lines)

 return self.param

 Source code for hammurabi.rules.toml

"""
This module adds TOML file support. TOML module is an extension for text rules
tailor made for .toml files. The main difference lies in the way it works.
First, the .toml file is parsed, then the modifications are made on the
already parsed file.

.. warning::

 In case of a single line toml file, the parser used in hammurabi will only
 keep the comment if the file contains a newline character.

"""

from abc import abstractmethod
from pathlib import Path
from typing import Any, MutableMapping, Optional

import toml

from hammurabi.rules.dictionaries import (
 DictKeyExists,
 DictKeyNotExists,
 DictKeyRenamed,
 DictValueExists,
 DictValueNotExists,
 SinglePathDictParsedRule,
)

class SingleDocumentTomlFileRule(SinglePathDictParsedRule):
 """
 Extend :class:`hammurabi.rules.dictionaries.SinglePathDictParsedRule`
 to handle parsed content manipulations on a single TOML file.
 """

 def __init__(
 self, name: str, path: Optional[Path] = None, key: str = "", **kwargs
) -> None:
 super().__init__(name, path, key, loader=self.__loader, **kwargs)

 @staticmethod
 def __loader(toml_str: str) -> MutableMapping[str, Any]:
 return toml.loads(# type: ignore
 toml_str, decoder=toml.TomlPreserveCommentDecoder() # type: ignore
)

 def _write_dump(self, data: Any, delete: bool = False) -> None:
 """
 Helper function to write the dump into file.

 :param data: The modified data
 :type data: :class:``hammurabi.rules.mixins.Any``

 :param delete: Indicate if the key should be deleted
 :type delete: bool
 """

 # TOML file cannot handle None as value, hence we need to set
 # something for that field if the user forgot to fill the value.

 self.param.write_text(
 toml.dumps(# type: ignore
 self.set_by_selector(self.loaded_data, self.split_key, data, delete),
 encoder=toml.TomlPreserveCommentEncoder(), # type: ignore
)
)

 @abstractmethod
 def task(self) -> Path:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

[docs]class TomlKeyExists(DictKeyExists, SingleDocumentTomlFileRule):
 """
 Ensure that the given key exists. If needed, the rule will create a key with the
 given name, and optionally the specified value. In case the value is set, the value
 will be assigned to the key. If no value is set, the key will be created with an empty
 value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, TomlKeyExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> TomlKeyExists(
 >>> name="Ensure service descriptor has stack",
 >>> path=Path("./service.toml"),
 >>> key="stack",
 >>> value="my-awesome-stack",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 Setting a value to None will result in a deleted key as per the documentation of how
 null/nil values should be handled. More info: https://github.com/toml-lang/toml/issues/30

 .. warning::

 Compared to :mod:`hammurabi.rules.text.LineExists`, this rule is NOT able to add a
 key before or after a match.
 """

[docs]class TomlKeyNotExists(DictKeyNotExists, SingleDocumentTomlFileRule):
 """
 Ensure that the given key not exists. If needed, the rule will remove a key with the
 given name, including its value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, TomlKeyNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> TomlKeyNotExists(
 >>> name="Ensure outdated_key is removed",
 >>> path=Path("./service.toml"),
 >>> key="outdated_key",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs]class TomlKeyRenamed(DictKeyRenamed, SingleDocumentTomlFileRule):
 """
 Ensure that the given key is renamed. In case the key can not be found,
 a ``LookupError`` exception will be raised to stop the execution. The
 execution must be stopped at this point, because if other rules depending
 on the rename they will fail otherwise.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, TomlKeyRenamed
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> TomlKeyRenamed(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.toml"),
 >>> key="development.depends_on",
 >>> value="dependencies",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

[docs]class TomlValueExists(DictValueExists, SingleDocumentTomlFileRule):
 """
 Ensure that the given key has the expected value(s). In case the key cannot
 be found, a ``LookupError`` exception will be raised to stop the execution.

 This rule is special in the way that the value can be almost anything. For
 more information please read the warning below.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, TomlValueExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> TomlValueExists(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.toml"),
 >>> key="development.dependencies",
 >>> value=["service1", "service2", "service3"],
 >>>),
 >>> # Or
 >>> TomlValueExists(
 >>> name="Add infra alerting to existing alerting components",
 >>> path=Path("./service.toml"),
 >>> key="development.alerting",
 >>> value={"infra": "#slack-channel-2"},
 >>>),
 >>> # Or
 >>> TomlValueExists(
 >>> name="Add support info",
 >>> path=Path("./service.toml"),
 >>> key="development.supported",
 >>> value=True,
 >>>),
 >>> # Or even
 >>> TomlValueExists(
 >>> name="Make sure that no development branch is set",
 >>> path=Path("./service.toml"),
 >>> key="development.branch",
 >>> value=None,
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 Since the value can be anything from ``None`` to a list of lists, and
 rule piping passes the 1st argument (``path``) to the next rule the ``value``
 parameter can not be defined in ``__init__`` before the ``path``. Hence
 the ``value`` parameter must have a default value. The default value is
 set to ``None``, which translates to the following:

 Using the ``TomlValueExists`` rule and not assigning value to ``value``
 parameter will set the matching ``key``'s value to `None`` by default in
 the document.
 """

[docs]class TomlValueNotExists(DictValueNotExists, SingleDocumentTomlFileRule):
 """
 Ensure that the key has no value given. In case the key cannot be found,
 a ``LookupError`` exception will be raised to stop the execution.

 Compared to ``hammurabi.rules.Toml.TomlValueExists``, this rule can only
 accept simple value for its ``value`` parameter. No ``list``, ``dict``, or
 ``None`` can be used.

 Based on the key's value's type if the value contains (or equals for simple types)
 value provided in the ``value`` parameter the value is:

 1. Set to None (if the key's value's type is not a dict or list)
 2. Removed from the list (if the key's value's type is a list)
 3. Removed from the dict (if the key's value's type is a dict)

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, TomlValueNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> TomlValueNotExists(
 >>> name="Remove decommissioned service from dependencies",
 >>> path=Path("./service.toml"),
 >>> key="development.dependencies",
 >>> value="service4",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)
 """

 Source code for hammurabi.rules.yaml

"""
This module adds Yaml file support. Yaml module is an extension for text rules
tailor made for .yaml/.yml files. The main difference lies in the way it works.
First, the .yaml/.yml file is parsed, then the modifications are made on the
already parsed file.
"""

from abc import abstractmethod
from pathlib import Path
from typing import Any, Optional

from ruamel.yaml import YAML

from hammurabi.rules.dictionaries import (
 DictKeyExists,
 DictKeyNotExists,
 DictKeyRenamed,
 DictValueExists,
 DictValueNotExists,
 SinglePathDictParsedRule,
)

[docs]class SingleDocumentYamlFileRule(SinglePathDictParsedRule):
 """
 Extend :class:`hammurabi.rules.dictionaries.SinglePathDictParsedRule`
 to handle parsed content manipulations on a single Yaml file.

 .. warning::

 This rule requires the ``yaml`` extra to be installed.
 """

 def __init__(
 self, name: str, path: Optional[Path] = None, key: str = "", **kwargs
) -> None:
 self.yaml = YAML()
 self.yaml.default_flow_style = False

 super().__init__(name, path, key, loader=self.yaml.load, **kwargs)

 def _write_dump(self, data: Any, delete: bool = False) -> None:
 """
 Helper function to write the dump into file.

 :param data: The modified data
 :type data: :class:``hammurabi.rules.mixins.Any``

 :param delete: Indicate if the key should be deleted
 :type delete: bool
 """

 self.param: Path

 self.yaml.dump(
 self.set_by_selector(self.loaded_data, self.split_key, data, delete),
 self.param,
)

[docs] @abstractmethod
 def task(self) -> Path:
 """
 Abstract method representing how a :func:`hammurabi.rules.base.Rule.task`
 must be parameterized. Any difference in the parameters will result in
 pylint/mypy errors.

 For more details please check :func:`hammurabi.rules.base.Rule.task`.
 """

[docs]class YamlKeyExists(DictKeyExists, SingleDocumentYamlFileRule):
 """
 Ensure that the given key exists. If needed, the rule will create a key with the
 given name, and optionally the specified value. In case the value is set, the value
 will be assigned to the key. If no value is set, the key will be created with an empty
 value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, YamlKeyExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> YamlKeyExists(
 >>> name="Ensure service descriptor has stack",
 >>> path=Path("./service.yaml"),
 >>> key="stack",
 >>> value="my-awesome-stack",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 This rule requires the ``yaml`` extra to be installed.

 .. warning::

 Compared to :mod:`hammurabi.rules.text.LineExists`, this rule is NOT able to add a
 key before or after a match.
 """

[docs]class YamlKeyNotExists(DictKeyNotExists, SingleDocumentYamlFileRule):
 """
 Ensure that the given key not exists. If needed, the rule will remove a key with the
 given name, including its value.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, YamlKeyNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> YamlKeyNotExists(
 >>> name="Ensure outdated_key is removed",
 >>> path=Path("./service.yaml"),
 >>> key="outdated_key",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``yaml`` extra to be installed.
 """

[docs]class YamlKeyRenamed(DictKeyRenamed, SingleDocumentYamlFileRule):
 """
 Ensure that the given key is renamed. In case the key can not be found,
 a ``LookupError`` exception will be raised to stop the execution. The
 execution must be stopped at this point, because if other rules depending
 on the rename they will fail otherwise.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, YamlKeyRenamed
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> YamlKeyRenamed(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.yaml"),
 >>> key="development.depends_on",
 >>> value="dependencies",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``yaml`` extra to be installed.
 """

[docs]class YamlValueExists(DictValueExists, SingleDocumentYamlFileRule):
 """
 Ensure that the given key has the expected value(s). In case the key cannot
 be found, a ``LookupError`` exception will be raised to stop the execution.

 This rule is special in the way that the value can be almost anything. For
 more information please read the warning below.

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, YamlValueExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> YamlValueExists(
 >>> name="Ensure service descriptor has dependencies",
 >>> path=Path("./service.yaml"),
 >>> key="development.dependencies",
 >>> value=["service1", "service2", "service3"],
 >>>),
 >>> # Or
 >>> YamlValueExists(
 >>> name="Add infra alerting to existing alerting components",
 >>> path=Path("./service.yaml"),
 >>> key="development.alerting",
 >>> value={"infra": "#slack-channel-2"},
 >>>),
 >>> # Or
 >>> YamlValueExists(
 >>> name="Add support info",
 >>> path=Path("./service.yaml"),
 >>> key="development.supported",
 >>> value=True,
 >>>),
 >>> # Or even
 >>> YamlValueExists(
 >>> name="Make sure that no development branch is set",
 >>> path=Path("./service.yaml"),
 >>> key="development.branch",
 >>> value=None,
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. note::

 The difference between KeyExists and ValueExists rules is the approach and the
 possibilities. While KeyExists is able to create values if provided, ValueExists
 rules are not able to create keys if any of the missing. KeyExists ``value`` parameter
 is a shorthand for creating a key and then adding a value to that key.

 .. warning::

 This rule requires the ``yaml`` extra to be installed.

 .. warning::

 Since the value can be anything from ``None`` to a list of lists, and
 rule piping passes the 1st argument (``path``) to the next rule the ``value``
 parameter can not be defined in ``__init__`` before the ``path``. Hence
 the ``value`` parameter must have a default value. The default value is
 set to ``None``, which translates to the following:

 Using the ``YamlValueExists`` rule and not assigning value to ``value``
 parameter will set the matching ``key``'s value to `None`` by default in
 the document.
 """

[docs]class YamlValueNotExists(DictValueNotExists, SingleDocumentYamlFileRule):
 """
 Ensure that the key has no value given. In case the key cannot be found,
 a ``LookupError`` exception will be raised to stop the execution.

 Compared to ``hammurabi.rules.yaml.YamlValueExists``, this rule can only
 accept simple value for its ``value`` parameter. No ``list``, ``dict``, or
 ``None`` can be used.

 Based on the key's value's type if the value contains (or equals for simple types)
 value provided in the ``value`` parameter the value is:

 1. Set to None (if the key's value's type is not a dict or list)
 2. Removed from the list (if the key's value's type is a list)
 3. Removed from the dict (if the key's value's type is a dict)

 Example usage:

 >>> from pathlib import Path
 >>> from hammurabi import Law, Pillar, YamlValueNotExists
 >>>
 >>> example_law = Law(
 >>> name="Name of the law",
 >>> description="Well detailed description what this law does.",
 >>> rules=(
 >>> YamlValueNotExists(
 >>> name="Remove decommissioned service from dependencies",
 >>> path=Path("./service.yaml"),
 >>> key="development.dependencies",
 >>> value="service4",
 >>>),
 >>>)
 >>>)
 >>>
 >>> pillar = Pillar()
 >>> pillar.register(example_law)

 .. warning::

 This rule requires the ``yaml`` extra to be installed.
 """

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 Documentation of Hammurabi

 		
 Hammurabi

 		
 Features

 		
 Community

 		
 Installation

 		
 Installing extras

 		
 Configuration

 		
 Usage examples

 		
 Enforce registered laws

 		
 Custom Rules

 		
 Custom Preconditions

 		
 Command line options

 		
 Contributing

 		
 Installation

 		
 Useful make Commands

 		
 Why Hammurabi?

 		
 Installation

 		
 Stable release

 		
 Installing extras

 		
 From sources

 		
 Configuration

 		
 Overview

 		
 Hammurabi configuration

 		
 Examples

 		
 Pillar configuration

 		
 Using custom rules

 		
 Examples

 		
 Rules

 		
 Base rule

 		
 Attributes

 		
 OwnerChanged

 		
 ModeChanged

 		
 Directories

 		
 DirectoryExists

 		
 DirectoryNotExists

 		
 DirectoryEmptied

 		
 Files

 		
 FileExists

 		
 FilesExist

 		
 FileNotExists

 		
 FilesNotExist

 		
 FileEmptied

 		
 Ini files

 		
 SectionExists

 		
 SectionNotExists

 		
 SectionRenamed

 		
 OptionsExist

 		
 OptionsNotExist

 		
 OptionRenamed

 		
 Json files

 		
 JsonKeyExists

 		
 JsonKeyNotExists

 		
 JsonKeyRenamed

 		
 JsonValueExists

 		
 JsonValueNotExists

 		
 Operations

 		
 Moved

 		
 Renamed

 		
 Copied

 		
 Templates

 		
 TemplateRendered

 		
 Text files

 		
 LineExists

 		
 LineNotExists

 		
 LineReplaced

 		
 Yaml files

 		
 YamlKeyExists

 		
 YamlKeyNotExists

 		
 YamlKeyRenamed

 		
 YamlValueExists

 		
 YamlValueNotExists

 		
 TOML files

 		
 TomlKeyExists

 		
 TomlKeyNotExists

 		
 TomlKeyRenamed

 		
 TomlValueExists

 		
 TomlValueNotExists

 		
 Preconditions

 		
 Base precondition

 		
 Attributes

 		
 IsOwnedBy

 		
 IsNotOwnedBy

 		
 HasMode

 		
 HasNoMode

 		
 Directories

 		
 IsDirectoryExist

 		
 IsDirectoryNotExist

 		
 Files

 		
 IsFileExist

 		
 IsFileNotExist

 		
 Text files

 		
 IsLineExist

 		
 IsLineNotExist

 		
 Reporters

 		
 Base reporter

 		
 Formatted reporters

 		
 JsonReporter

 		
 Notifications

 		
 Base notification

 		
 Slack notification

 		
 hammurabi

 		
 hammurabi package

 		
 Subpackages

 		
 Submodules

 		
 hammurabi.config module

 		
 hammurabi.exceptions module

 		
 hammurabi.helpers module

 		
 hammurabi.law module

 		
 hammurabi.main module

 		
 hammurabi.mixins module

 		
 hammurabi.pillar module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Releasing

 		
 Vulnerabilities

 		
 Reporting vulnerabilities

 		
 What is vulnerability?

 		
 In case you found a vulnerability

 		
 Credits

 		
 Development Lead

 		
 Maintainers

 		
 Contributors

 		
 CHANGELOG

 		
 Unreleased

 		
 Fixed

 		
 Changed

 		
 0.11.1 - 2020-10-20

 		
 Fixed

 		
 Changed

 		
 0.11.0 - 2020-09-19

 		
 Added

 		
 Fixed

 		
 Changed

 		
 0.10.0 - 2020-08-14

 		
 Added

 		
 Fixed

 		
 Changed

 		
 Removed

 		
 0.9.1 - 2020-08-08

 		
 Fixed

 		
 0.9.0 - 2020-08-07

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.8.2 - 2020-07-31

 		
 Fixed

 		
 Changed

 		
 0.8.1 - 2020-07-20

 		
 Fixed

 		
 0.8.0 - 2020-07-15

 		
 Added

 		
 Changed

 		
 0.7.4 - 2020-07-14

 		
 Added

 		
 Changed

 		
 0.7.3 - 2020-05-25

 		
 Fixed

 		
 0.7.2 - 2020-05-25

 		
 Fixed

 		
 0.7.1 - 2020-05-22

 		
 Fixed

 		
 Changed

 		
 0.7.0 - 2020-04-28

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.6.0 - 2020-04-06

 		
 Added

 		
 Changed

 		
 0.5.0 - 2020-03-31

 		
 Fixed

 		
 Removed

 		
 0.4.0 - 2020-03-31

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.3.1 - 2020-03-26

 		
 Fixed

 		
 0.3.0 - 2020-03-25

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Removed

 		
 0.2.0 - 2020-03-23

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Removed

 		
 0.1.2 - 2020-03-18

 		
 Changed

 		
 0.1.1 - 2020-03-17

 		
 Changed

 		
 Fixed

 		
 0.1.0 - 2020-03-12

 		
 Added

_static/file.png

_static/minus.png

